• 締切済み

高校数学

あるN人の名前(同じ名前の者はいないものとする)がそれぞれに書かれたN個のボールが箱の中に入っている。 このN人が、1人1個ずつこの箱から無作為にボールを取り出すとき、自分の名前が書かれたボールを手にする人が少なくとも1人いる確率をP[N]とする。 N≧3におけるP[N]をP[2],P[3],・・・,P[N-1]によって表せ。 P[N]=1-1/(P[2]×P[3]×P[4]・・・×P[N-1]) が答えなのではないかと思うのですが(数字を入れただけなので自信はないです)、どのように解けばよいのかわかりません。 この式を仮定として、数学的帰納法を用いてN≧3で常に成立すると証明したのでよいのでしょうか? どなたか教えてください。お願いいたします。

みんなの回答

  • f272
  • ベストアンサー率46% (8026/17154)
回答No.1

> P[N]=1-1/(P[2]×P[3]×P[4]・・・×P[N-1]) > が答えなのではないかと思うのですが これが間違いなのはすぐに分かる。P[*]は確率なのだからどれも0以上1以下です。それをかけ合わせたP[2]×P[3]×P[4]・・・×P[N-1]も0以上1以下です。そうすると1/(P[2]×P[3]×P[4]・・・×P[N-1])は1以上になって1-1/(P[2]×P[3]×P[4]・・・×P[N-1])は負の値になります。絶対おかしいでしょ。 それで,肝心の答えですが,どういう式を求めているのかよくわからない。 例えば P[N]=P[N-1]-(-1)^N/N! とかでもいいのかな。

関連するQ&A

  • 【問題】箱に2個の赤いボールとn-2個の白いボールが入っている。(n=

    【問題】箱に2個の赤いボールとn-2個の白いボールが入っている。(n=3,4,5,・・・) (1)略 (2)箱から3個のボールを取り出すとき、2個が白、1個が赤となる確率をP(n)とおく。このとき、P(n)={6(n-3)}/{n(n-1)}であることを証明せよ。ただし、どのボールも取り出される確率は等しいとする。 (3)P(n)-P(n+1)を求めよ。 (4)p(n)が最大になる確率を求めよ。 (2)からわかりません^^; 数学的帰納法を使おうとしてn=3のとき成り立つ。として、次にn=kのとき成り立つと仮定して、n=k+3のとき成り立つことを示そうとしたのですが。。。できません^^; どなたかよろしくお願いします。

  • 数学的帰納法って?証明をして下さい!

     次の問題を、どなたか解いて頂けないでしょうか? nは自然数とする。このとき、次式が成立することを数学的帰納法を用いて証明せよ。 1×3+2×4+3×5…+n(n+2)=1/6n(n+1)(2n+7)…命題A  nが1のときに成り立つことは証明できました。n=kのときに命題Aが成り立つと仮定すると、1×3+2×4+3×5…+k(k+2)=1/6k(k+1)(2k+7)…(1)である。n=k+1のとき命題Aの左辺は(1)を用いて、命題Aの左辺=…以下の証明が出来ません。  数学的帰納法について、あまり理解してません。出来れば解説を加えて頂きたいです。よろしくお願いします!(1/6は、6分の1のことです。)

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • 【数学B】数学的帰納法 発展問題

    まず、問題を書きます。 /////////////////////////////////////////// 問 nは自然数とする。数学的帰納法によって、次の不等式を証明せよ。 1) 1^2+2^2+3^2+・・・・・・+n^2<(n+1)^3/3 /////////////////////////////////////////// 見にくいですが。 解答を見てみたのですが、何か僕にとって大事なところが抜けていて、何言ってるかわかりませんでした。 帰納法で i)n=1のとき ii)n=kのとき で考えるところまでは分かりますが、n=kでnにkを代入した式を仮定するまでしか駄目でした。 この数学的帰納法の証明方法はいくつかあると思いますが、 一番、簡潔で分かりやすく証明できる方法を教えてください。 お願いします。

  • 数学的帰納法

    数学的帰納法によって、 n≧2のとき、1+(1/2^2)+(1/3^2)+・・・+(1/n^2)<2-(1/n)が成り立つことを証明せよ。 まず、n=2のとき1+1/4<2-(1/2)で成立 n=kのとき1+(1/2^2)+(1/3^2)+・・+(1/k^2)<2-(1/k)が成立するとして、n=k+1の時も成り立つことを証明する という所で止まっています。非常に簡単な事をお尋ねしているかも知れませんが、ここから先の証明方法を教えて下さい!!

  • 数学帰納法でn=1, 2 の成立を示す場合の考え方

    数学的帰納法では通常 (1) n=1の成立を示し, (2) n=kの成立を仮定しそれを用いてn=k+1のときの成立を示す となっていますが, (1) n=1,2 の成立を示し (2) n=k k+1 の成立を仮定し…… となる問題もときどき見かけます。 後者で証明する場合には問題にどのような特徴があるのでしょか? 宜しくお願いします。

  • 数学的帰納法の証明

    自然数に関する数学的帰納法の原理が自然数が整列集合であることと同値であるということはわかっていますが 次のように数学的帰納法を証明した場合どこに整列集合の性質が使われているor論法が間違っているのでしょうか。 数学的帰納法 自然数nに関する命題をP(n)とする (ⅰ)P(0)が成り立つ (ⅱ)すべての自然数nに対して、P(n)が成り立つならばP(n+1)も成り立つ この2条件が満たされているときP(n)はすべての自然数nについて成り立つ (論理記号でかくと(ⅱ)は(∀n∈N(P(n)⇒P(n+1))だと思います) [証明] P(n)が成り立たないような集合をSとする Sが空集合である事を示せばP(n)がすべての自然数nについて成り立つ事になる Sが空集合でないと仮定するとm∈Sとなるようなmが存在する このとき条件(ⅱ)を次のように書き換えて (II)すべての自然数nに対して、P(n+1)が成り立たないならばP(n)も成り立たない と考えると P(m)が成り立たないのでP(m-1)も成り立たないことになる このときP(m-1)が成り立たないのでP(m-2)も成り立たない 以下続けると結局 P(1)が成り立たないのでP(0)も成り立たないことになるが これは(ⅰ)に反する よってSが空集合でないという仮定が間違っていたことになる ゆえにSは空集合であり命題P(n)がすべての自然数nに対して成り立つことが示された

  • 数学的帰納法について

    数学的帰納法の証明問題なんですけど 任意のnに対し  (1+2+3+・・・+n)(1+1/2+1/3+・・・+1/n)≧n**2 が成り立つことを数学的帰納法によって証明せよ。 です。よろしくお願いします。

  • 数学的帰納法の第二段について

    数学的帰納法は第一段と第二段でわかれてるのですが第二段について質問です。 (Ⅱ) n=kのとき、命題P(n)が成り立つことを仮定すれば…。 この仮定すればって言うのは、第一段で、n=1は成り立つことから、1以外の数をn=kと表すことにして、これが成り立つかどうかはわからないけど、n=k+1が成り立つことを証明することは、n=1にkを足しただけ、逆を言えば、第一段で成り立ったn=1の時の等式にkを足したものだから、成り立ったものとn=k+1の等式を関係づけて証明するっことです? 要するに、仮定の使われ方がわかりません。自分なりに考えてみたんですが、しっくりきません。どうかよろしくお願いします。

  • 数学3の級数の問題がわかりません。

    数学3の級数の問題がわかりません。 n個のボールを2n 個の箱へ投げ入れる。各ボールはいずれかの箱に入るものとし、どの箱に入る確率も等しいとする。どの箱にも1個以下のボールしか入っていない確率をPnとする。 このとき、 極限値lim[n→∞] logPn/n を求めよ。 確率の考え方からわかりません。 お願いします!