ボルツァノ・ワイエルシュトラスの定理について

このQ&Aのポイント
  • ボルツァノ・ワイエルシュトラスの定理について疑問があります。
  • 具体的には、「あるaが唯一あって、∞∩I_k = {a}, a = lim m_k = lim M_k」という記述が唯一なのかが分かりません。
  • 例えば0,1,0,1,...という数列を考えた場合、収束する部分列は少なくとも2つあり、上記の記述に反すると思います。
回答を見る
  • ベストアンサー

ボルツァノ・ワイエルシュトラス

ボルツァノ・ワイエルシュトラスの定理 「有界な数列{a_n}n=1,2,... は収束する部分列を含んでいる。」 という定理の証明について、サイエンス社発行、笠原晧司著の「微分積分学」の中で、 「あるaが唯一あって、 ∞ ∩I_k = {a}, a = lim m_k = lim M_k k=1       k→∞   k→∞   」 という記述があるのですが、何故唯一なのかが分かりません。 著作権侵害に当たるといけないので丸写しは出来ないのですが、自分の言葉で置きかえると、 {a_n}は有界だからある閉区間I=[m,M]に含まれる。これを真中でばっさり割って[m,(m+M)/2]、[(m+M)/2,M]を考えると少なくともどっちかには無限個のa_nが含まれる。それをI_1とする。以下同じように、半分に割って無限個含む方をI_kとすると閉区間列I_k=[m_k,M_k](k=1,2,...)が出来て、     I ⊃ I_1 ⊃ I_2 ⊃ ... ⊃ I_k ⊃ ..., M_k - m_k = 1/2^k * (M - m)→0 (k→∞) 従ってあるaが唯一あって、 ∞ ∩I_k = {a}, a = lim m_k = lim M_k k=1       k→∞   k→∞ となる、というのが流れです。 半分に割って行く作業で必ずどちらかは有限個しか含まれないのであれば唯一となるのは分かります。 しかし、例えば0,1,0,1,...と言う数列を考えた場合、収束する部分列は少なくとも2つあり、上の「aが唯一あって」という記述に反すると思うのです。 私は何か勘違いをしているのでしょうか?それともこの記述が間違ってるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • suffer
  • ベストアンサー率100% (1/1)
回答No.1

この証明では,収束する部分列が少なくとも1つ作れるという事を示しているだけで,2つ以上作れないとは言っていません。 例に出されている,{a_n} = 0,1,0,1,... という数列を考えると, I_1 = [0,1/2] の場合と I_1 = [1/2,1] の場合が考えられますが,どちらにも無限個の a_n が含まれます。 ですから, I_1 = [0,1/2] とすると収束値 a は唯一 0 となり, I_1 = [1/2,1] とすると収束値 a は唯一 1 となります。 つまり収束する部分列は少なくとも2つありますが,{I_k} を1つ決めたときにはその収束値 a は唯1つ,という事ではないでしょうか。

taropoo
質問者

お礼

なるほど。 {I_k}が決まっちゃえばそれに対応するaは唯一つと言う事ですね。 納得です。 ありがとうございました。

関連するQ&A

  • 数学の問題がわかりません><

    数学の問題がわかりません!よければ教えてください>< I = [0,∞)とおく。 f , f_n ; I → R はI上で有界な関数とし、関数列{f_n}[n=1,∞]は関数 f に I 上で一様収束するとする。 (1) 各n∈Nに対してlim[x→∞]f_n(x) = a_n ∈Rが成り立つならば、数列{a_n}[n=1,∞]はCauchy列であることを示せ。 (2) (1)と同じ条件の下でlim[n→∞]a_n = A とおくとき、lim[x→∞]f(x) = Aであることを示せ。 回答よろしくお願いします!

  • この場合,Cauchy列が有界となる理由は?

    宜しくお願い致します。 最下の命題の証明でCauchy列が有界となる理由がわかりません。 [定義-3]順序集合(A,≦')の部分集合Bに於いて、{b∈B ;∀x∈B,b≦'x}≠φの時、 {b∈B;∀x∈B,b≦'x}:単集合となる{b∈B ;∀x∈B,b≦'x}のただ一つの元bをminBと表記し、(A,≦')に於けるBの最小元と言う。 [定義-2]順序集合(A,≦')の部分集合Bに於いて、{a∈A ;∀x∈B,x≦'a}≠φの時、 {a∈A ;x∈B⇒x≦'a}の元を(A,≦')に於けるBの上界と言う。 [定義-1] 順序集合(A,≦')に於いて、Aの部分集合Bに於ける上界が存在する時、Bは(A,≦')の中で上に有界であると言う。 [定義0] 順序集合(A,≦')に於いて、Aの部分集合Bに於ける上界が存在する時、その上界の集合の最小限をBの上限といい,supBと書く。 [定義1] 数列{a_n}のある部分列がaに収束する時,このaを数列{a_n}の集積値という。 [定義2] 順序集合(A,≦')が完備 ⇔ (i) (A⊃)Bが上に有界ならば∃supB∈A (ii) (A⊃)Bが下に有界ならば∃infB∈A [命題1](Weierstrassの定理) 有界な数列には少なくとも1つの集積値が存在する。 [命題2] 数列{a_n}が収束する ⇔ (i) {a_n}が有界 (ii) {a_n}の集積値は唯一つ [命題3] 順序集合(A,≦')を距離空間(その距離をdとする)とする。Aが完備ならばAの任意のCauchy列{c_n}はlim[n→∞]c_n∈A. を示しています。 [証] Cauchy列の定義から0<∀ε∈R,∃M∈N;M<m,n∈N⇒d(c_m,c_n)<ε {c_n}は有界(∵?)。 従って,sup{c_n}∈A,inf{c_n}∈A(∵定義2) これから{c_n}は有界と言えるから,{c_n}は収束する (∵唯1つの集積値が存在する (∵{c_n}には少なくとも1つの集積値が存在するから(命題1), {c_n}の集積値が2つあったと仮定し,その集積値をa,bとする。 {c_n}の部分列{a_n}がaに収束,部分列{b_n}がbに収束。 収束の定義から夫々 0<ε'∈R,∃M'∈N;M'<k⇒|a_k-a|<ε' 0<ε'∈R,∃M"∈N;M"<h⇒|b_h-b|<ε' ところが |a-b|=|(a-a_k)-(b-b_h)+(a_k-b_h)| ≦|a-a_k|+|b-b_h|+|a_k-b_h|<2ε'+|a_k-b_h| ∴ |a_k-b_h|>|a-b|-2ε' これはmax{M',M"}<∀k,h∈Nに対しても|a_k-b_h|>|a-b|-2ε'となってしまう事を意味しているので ここでε':=|a-b|/4と採ってしまうと, ∃M∈N;M<k,h∈N⇒|a_k-b_h|>|a-b|/2 となり,Cauchy列の定義に反する) よって命題2) そして,{c_n}の収束値をcとするとc∈A (∵c∈A^cだと仮定してみると今,lim[n→∞]c_n=cなので 0<∀ε∈R,∃M∈N;M<m∈N⇒d(c_m,c)<εと書ける筈だが書けない(∵dはAでしか定義されてない)) 、、、と示せると思うのですが2行目「{c_n}が有界」の理由がわかりません。 d(c_m,c_n)<εからどうすれば{c_n}が有界である事が言えますでしょうか?

  • ディリクレの判定法

    複素数列{a[n]}と実数列{p[n]}が (あ) [n]Σ[k=0] a[k] は有界 (い) p[0]≧p[1]≧p[2]≧…≧p[n]≧…≧0 を満たし、 (う)lim[n→∞] p[n] = 0 (え)[∞]Σ[n=0] a[n] は収束 のいずれかを満たすとき [∞]Σ[n=0] p[n]a[n] は収束する というのを用いて [∞]Σ[n=1] (sin(nθ))/n がθ∈Rの値に依らず収束することを示してください。 また、[∞]Σ[n=1] (cos(nθ))/n が収束しないようなθ∈Rをすべて求めてください。

  • 合っているか不安です。

    収束に関する問題です。 数列{n+1/2n+1}が1/2に収束することを証明しなさい。 (証明) lim n→∞(n+1/2n+1)=lim n→∞(1/2+1/4n+2)=1/2 任意の正数εに対し、アルキメデスの定理より  N+1>1/ε つまり 1/N+1<ε  をみたす自然数Nが存在する。 また、n>Nであるすべての番号nに対し、  |(1/2+1/4n+2)-1/2|=1/n+1                  <1/N+1<ε すなわち  |(1/2+1/4n+2)-1/2|<ε これは、極限値の定理より、  lim n→∞(1/2+1/4n+2)=1/2 である。よって、数列{n+1/2n+1}は上に有界 な単調増加。  (証明終) どこかまずい所があれば教えてください。お願いします!

  • 線形空間についてです

    私がいま使っている教科書に次のような記述がありました。 「実数列の全体は実線形空間である。 ただし{a_n}+{b_n}={a_n+b_n} {ca_n}=c{a_n}と定義する このうち、収束する数列だけを考えれば、解析学での周知の定理により ふたたび実線形空間がえられる。」 (1)実数列が実線形空間になるとありますが、証明がわかりません。 実線形空間の公理を一つ一つ確認するのでしょうが、数列ってどこまでも無限に続いていくのに、どうやって示すのですか?(たとえばa(x+y)=ax+ayなど・・) たしかに公理を満たしそうですが、このような無限につづくものに対しては自明としていいのですか。 (2)収束しない数列だけを考えても実線形空間になるんですよね? なのにわざわざ収束するものだけを、特別に書いているのはなぜですか?なにか意味(うれしいこと?)があるのでしょうか。 解析学での周知の定理ってのも具体的になにを示しているのか・・。 どなたか解説よろしくお願いします。

  • 大学の数列、極限について質問です!

    大学の講義で出た問題がわかりません。 問一 a(n)>0、lim(n→無限)a(n+1)/a(n)=r<1ならば、数列a(n)はある項から先は有界な減少列となる事を示せ。 問二 lim(n→無限)a(n)=0を示せ。 問三 lim(n→無限)x^n/n!(x>0)を求めよ。 問二は問一が出来たら簡単に書ける事はわかるんですが、 問一と問三がさっぱりわからないです。 わかる人教えてくれませんか。

  • lim[n→∞]|a_n|^(1/n)=1とせよ。Σ[n=1..∞]a_nx^nが[-r,r] (0<r<1)で一様収束

    こんにちは。 [問] lim[n→∞]|a_n|^(1/n)=1とせよ。Σ[n=1..∞]a_nx^nが[-r,r] (0<r<1)で一様収束する事を示せ。 [証] |a_nx^n|≦|a_nr^n| (∵x<r) 且つ (Σ[n=1..∞]|a_nr^n|=)Σ[n=1..∞]|a_n|r^nが収束。 が言えれば Weierstrassの一様収束の定理「∀x∈I(Iは区間)|a_k(x)|≦c_k且つΣ[k=1..∞]c_kが収束 ⇒Σ[k=1..∞]a_k(x)はIで一様且つ絶対収束する」 が使えて Σ[n=1..∞]a_nx^nは一様収束する。 と示せるのですが「Σ[n=1..∞]|a_n|r^nが収束」がどうしても言えません。 どうすれば「Σ[n=1..∞]|a_n|r^nが収束」が言えますでしょうか? lim[n→∞]|a_n|^(1/n)=1(収束半径は1)からは「Σ[n=1..∞]a_nr^nが収束」しか言えませんよね。

  • この定理の名称を教えてください

    以前何かの本で見かけてうる覚えなのですが多分 「∀k∈Nに対して,複素関数列f_kは開領域D(⊂C)で正則であるとする。この時, {Σ_{k=0}^n|f_k(z)|;n∈N}が有界⇒Σ_{n=0}^∞f_n(z)はDで正則」 だったと思うのですがこの定理は"有界収束定理"と呼ばれるものなのでしょうか?

  • 数列が収束するための必要十分条件(定理)の証明が分かりません

    コーシー列の手前のところの勉強をしています。旧版の「解析学序説(上)」P130(2003年の新版では下巻 P5)です。 [定理] 数列a(n)が、ある有限な値に収束するための必要十分条件は、数列が有界であって、しかもその集積値ただ一つしかないことである。 ちょっと長くなりますが、証明を全体を引用します。 [証明] 必要なことはすでに述べたから、十分なことを証明する。a(n)は有界だから(前出の定理により)集積値があり、それは仮定によりαただ一つである。もしa(n)がこのαに収束しなかったとすると、ある限界ε0(イプシロンゼロ)があって、どんなに先へ行っても|a(n)-α|≧ε0 であるa(n)があるから、a(n)から部分列 a(ni)を選んで、すべてのniについて|a(ni)-α|≧ε0 であるようにできる。(前出の定理により) a(ni)は集積値βを持つが、|β-α|≧ε0 だから、β≠α。しかもβはもとの数列の集積値でもあるから、これは仮定に反する。ゆえにa(n)→α。 (引用終わり) この中で、|β-α|≧ε0 というのがどうしても導けません、というか分かりません。 線分図というか数直線表示をすると、「すべてのniについて|a(ni)-α|≧ε0 であるようにできる」ので、もしβが(α-ε0,α+ε0) の中に入ってしまうとするならば、すべてのa(ni)が(α-ε0,α+ε0) の中に入ってしまい、矛盾を生じることは分かるのですが、絶対値を含む初歩的な不等式を使うことによって、|β-α|≧ε0 が導けると推測するのですけれども、できませんでした。 よろしくお願いいたします。

  • 無限積の極限

    数列a(n)が 0<a(k)<1 (k=1,2,3,・・・n)を満たすとき、 lim【n→∞】Π[k=1~n]a(n)  は0に収束するのか。 Πは総乗の記号です。感覚的には収束しないといと思うのですが、あっているでしょうか。 なにか上手い証明があれば教えてください。