• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:不等式の証明)

不等式の証明方法!

mister_moonlightの回答

回答No.1

完全に解けないから言うじゃないが、a>0、b>0、c>0 の条件があるんじゃないか? それなら、解ける。。。。。。。自信ないが。。。。。。w a=y/x、b=z/y、c=x/z とすると、xy=α、yz=β、zx=γ (α>0、β>0、γ>0)として、(α+βーγ)*(γーα+β)*(α+γ-β)/(αβγ)≦1 を証明する事になる。 そこから、場合わけが必要だが、α+βーγ>0、γーα+β>0、α+γ-β>0 の時は、2つずつの相加平均・相乗平均をつくり、その3つの不等式を掛け合わせれば証明できるんだが。。。。。? 私の勘違いだろうか? 

112233445
質問者

お礼

回答ありがとうございます すみませんでした。おっしゃる通り、a>0、b>0、c>0の条件が ありました。これから、注意したいと思います。 発想がすごいと、思います。勉強になります。 この後の証明も興味深い。

関連するQ&A

  • 不等式の証明(やや発展)

    お世話になっております。 a,b,cは実数、a+b+c=0であるとき、不等式 (|a|+|b|+|c|)^2≧2(a^2+b^2+c^2) を証明せよ。また、等号が成立つときはどのようなときか。 という証明問題について質問です。証明自体はそれほど難しくは無いのかな、と思ってますが…。 a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)=0-2(ab+bc+ac)と出来ますから、 左辺-右辺=-{(a+b+c)^2-2ab-2bc-2ca}+2(|ab|+|bc|+|ca|)=2{(|ab|+ab)+(|bc|+bc)+(|ca|+ca)}…(1) 常に、|ab|≧-abであるから、|ab|+ab≧0、(bc、caについても同様)であるから、(1)≧0。与えられた不等式は成立つ。 ここで質問。等号成立条件が分かりません。不等式の証明より、|ab|=-ab(bc、caも同様)が成立つ時だと思うのですが略解によると、 a、b、cの少なくとも一つが0であるときなのだそうです。何故でしょう…。  a,b,cのうち少なくとも一つが0 ちゅうことは、a=0またはb=0またはc=0 ということになろうかと思います。ということは、更にabc=0 という式も言えるハズです。しかし、当方の不等式の証明の仕方が不適切なのか、abc=0 を導く根拠が見当たりません。

  • 不等式の証明と命題の真偽(基本的)

    お世話になっております。 実数a、b、cに対して、 等式 |a|+|b|+|c|=|a+b+c|…P が成立つことは、ab+bc+ca≧0 …Q が成立つための○○条件である。(○の数は特に意味なし) という問題です。証明も合わせて(不等式を証明して、等号成立条件を調べてから命題を考えてみたかった為)以下のように考えてみました。 まず証明。 与えられた等式を考える前に、不等式 |a|+|b|+|c|≧|a+b+c|…(2)を証明する。 (2)の両辺は正または0であるから、両辺の二乗の差を考えて (|a|+|b|+|c|)^2-|a+b+c|^2 =2{|ab|+|bc|+|ca|-(ab+bc+ca)} =2{(|ab|-ab)+(|bc|-bc)+(|ca|-ca)}…(3) ここで、|ab|≧ab,|bc|≧bc,|ca|≧ca だから、(3)≧0。従って不等式(2)は成立つ。等号成立は、ab≧0,bc≧0,ca≧0…(4) より、ab+bc+ca≧0 の時に限る。 よって、等式Pが成立つとき、a,b,cはQを満たす。(ここが一番曖昧です) 逆にQが成立つとき、(4)が成立つから、積の場合分けで導かれる二つの場合で、 a≧0かつb≧0かつc≧0 のときは、Pは成立つ。 a≦0かつb≦0かつc≦0 のときはPは、 左辺=-a-b-c=-(a+b+c)=右辺 より成立つ。 以上より、○○は必要十分条件が適当と思す。 以上、拙いですが頭捻ってみました。当方が微妙だと感じるのは、不等式の証明についての説明部分(解答ではb+cを一括りにしてaと(b+c)の二変数と考えて、二変数については不等式が成立つことを利用して証明してました)と、既に書いた通り、条件Pが十分条件であることの説明部分(こちらは解答なし)です。 長ったらしい文で恐縮ですが、閲覧ついでにご回答いただけると嬉しいです。宜しくどーぞ。

  • 不等式の証明

    a>0,b>0,c>0,abc=8のとき、次の不等式を示せ。 a^2/√{(1+b^3)(1+c^3)}+b^2/√{(1+c^3)(1+a^3)}+c^2/√{(1+a^3)(1+b^3)}>=4/3 考えたこと。 (1)相加相乗平均を使うと、9>={(1+a^3)(1+b^3)(1+c^3)}^(1/3)を示せばよいとなるが、  abc=8から、いくらでもa,b,cの値は大きくなるので、うまくいかない。 (2)左辺の第一項a^2/√{(1+b^3)(1+c^3)}をa^2/√{(1+b^3)(1+c^3)}>=4△/3(△+○+☆)の形にできないか。第二項、第三項も同様にして、3つの式を加えて 左辺>=4(△+○+☆)/3(△+○+☆)=4/3。とできないかと考えたが、挫折。 よろしく、アドバイスお願いします。  

  • 不等式の証明

    問題 a^3+b^3+c^3≧3abc (ただし、a,b,cはすべて正の数とする) 右辺ー左辺 より a^3+b^3+c^3-3abc =(a+b+c)(a^2+b^2+c^2-ab-bc-ca) ここで、 a>0,b>0,c>0より a+b+c>0 よって、a^2+b^2+c^2-ab-bc-ca≧0をどのように示せばよいのかがわかりません。 お願いします

  • 不等式の証明について

    コーシー・シュワルツの不等式の特別な場合についての問題です。 (3)の代入後の式整理についてご教示いただければと思います。 解答によると、(3)で(2)の結果の不等式を使い、d=a+b+c/3とおいて代入したときの右辺が a^2+b^2+c^2/3 になるようなのですが、導かれるまでの過程がわかりません。 そのまま代入して計算しますと  a^2+b^2+c^2+(a+b+c/3)^2/4 =1/4(9a^2+9b^9c^2+a^+b^2+c^2+2(ab+bc+ca)/9) =1/4(10(a^2+b^2+c^2)+2(ab+bc+ca)/9) となって行き詰まってしまいます。 左辺は代入して整理しすぐ(a+b+c/3)^2と変形できたのですが右辺がわかりません。 ご教示よろしくお願いいたします。

  • 不等式の証明

    数学II 不等式の証明 A>0,B>0のとき、不等式(B/2A)+(2A/B)≧2を証明しなさい。 という問題なのですが、左辺を相加平均、右辺を相乗平均すると解答には書いてあるのですが意味がわかりません。 どうか詳しくお教えいただけないでしょうか? お願いいたします。

  • 証明問題の答えあわせをお願いします。

    証明問題の答えあわせをお願いします。 問.a+b+c+abc=4、a≧0 b≧0 c≧0の時a+b+c≧ab+bc+caを示せ。 自分の答え. f(a,b,c) = a+b+c-ab-bc-ca = a(1-b-c)+b+c-bcとおく。 条件より a≧0,b≧0,c≧0 …(1)  a+b+c+abc=4 …(2) また、本問では対称性より a≧b≧c…(3)の場合を考えるだけで十分である。 まず、a,b,cの取りうる範囲について考える。 a+b+c+abc ≧2√(ab)+c+abc (∵相加相乗平均) =2√(ab)+c(1+ab) ≧2√(ab)+c・2√(ab) (∵相加相乗平均) =2√(ab)・(c+1) ≧2√(ab)・2√c (∵相加相乗平均) =4√(abc) 従って、(2)より1≧abc…(4)が成り立つ。 また、(2)を変形するとa=(4-b-c)/(1+bc)となり、 a=(4-b-c)/(1+bc)≦4/(1+bc)≦4 ∴a≦4…(5) 次に、aについて場合分けしてf(a,b,c)≧0を示す。 (1)1>a≧0の場合 (3)より1>a≧b≧c、1>abcとなるので、4>a+b+c+abcとなり、これは(2)に反する。 (2)a≧1の場合 (5)より1≦a≦4となり、また(4)よりbc≦1…(6) ここで、f(a,b,c)はaについての1次関数と見なせるので、 区間1≦a≦4の両端におけるf(a,b,c)の値を求めると、 a=1のときf(1,b,c) = 1-bc ≧0 (∵(6)) a=4のとき、(2)よりb,cのとりうる値はb=c=0のみなので、f(4,0,0) = 0 ここで、f(a,b,c)はaについての1次関数なので、区間1≦a≦4において直線的に変化する。 以上より、常にf(a,b,c)≧0となるので、題意は示された。■ 全体的にもやもやしてますが、特に最後の数行がどうも自信がありません。横軸にa、縦軸にfを取ったとき、b,cが変化しても、(1,1-bc)と(4,0)を結ぶ直線上で変化するのだからf≧0としたのですが、大丈夫でしょうか。 また、元の式がきれいなので、因数分解して○≧0のような式にしたり、他のエレガントな方法を思いついた方は教えてください。長くなりましたが、よろしくお願いいたします。

  • 不等式の証明(既出 問題訂正)

    a>0,b>0,c>0,abc=8のとき、次の不等式を示せ。 a^2/√{(1+b^3)(1+c^3)}+b^2/√{(1+c^3)(1+a^3)}+c^2/√{(1+a^3)(1+b^3)}>=4/3を a^2/√{(1+a^3)(1+b^3)}+b^2/√{(1+b^3)(1+c^3)}+c^2/√{(1+c^3)(1+a^3)}>=4/3に訂正します。 考えたこと。 (1)相加相乗平均を使うと、9>={(1+a^3)(1+b^3)(1+c^3)}^(1/3)を示せばよいとなるが、  abc=8から、いくらでもa,b,cの値は大きくなるので、うまくいかないと思いました。 (2)左辺の第一項a^2/√{(1+b^3)(1+c^3)}をa^2/√{(1+b^3)(1+c^3)}>=4△/3(△+○+☆)の形にできないか。第二項、第三項も同様にして、3つの式を加えて 左辺>=4(△+○+☆)/3(△+○+☆)=4/3。とできないかと考えたが、挫折。 よろしく、アドバイスお願いします。

  • 等式の証明

    実数a, b, cがあるとき a^2=b^2=c^2 かつ ab=bc=ca ならば a=b=c であることを、正確に証明していただけませんか?

  • a≧1、b≧1、c≧1のとき次の不等式が成り立つことを示せ。

    (a^3-1/a^3)+(b^3-1/b^3)+(c^3-1/c^3)≧3(abc-1/abc) (左辺)-(右辺)=Pとおく。 P=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) -(1/a+1/b+1/c)(1/a^2+1/b^2+1/c^2-1/ab-1/bc-1/ca) a≧1、b≧1、c≧1であるから、 a+b+c≧3≧1/a+1/b+1/c>0・・・(1) (1)により(a^2-1/a^2)+(b^2-1/b^2)≧2(ab-1/ab) (b^2-1/b^2)+(c^2-1/c^2)≧2(bc-1/bc) (c^2-1/c^2)+(a^2-1/a^2)≧2(ca-1/ca) 辺々を加えて、両辺を2で割ると a^2+b^2+c^2-ab-bc-ca≧1/a^2+1/b^2+1/c^2-1/ab-1/bc-1/ca =1/2{(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2}            ≧0・・・(2) (1)、(2)によりP≧0 したがって、与えられた不等式は成り立つ。 等号はa=b=cのとき成り立つ。 >(1)、(2)によりP≧0 自分にはこれでは分かりづらいです。 具体的に数字決めて確かめては見たのですが、何かスッキリしません。 もう少し分かりやすく説明して頂けると幸いです。 >等号はa=b=cのとき成り立つ。 これはどこから導けばいいのでしょうか?