• ベストアンサー

代数学

非常に漠然とした質問なんですが…代数学ってなんなんでしょうか?? 私のイメージとしては… ・図形や関数ではなく、数や式 ・aljebraと英語表記するので、「移項」という意味から、方程式??  代数って「数の代わり」ともとれますし… 「代数学」とは何かを調べてみてもいまいちよくわからなかたので… 代数学とは何かという定義とかってあるんでしょうかね?? 皆さんはどのようなイメージを持っていますか?? 専門としていない方の漠然としたイメージでも結構ですので、回答よろしくお願いします!!

質問者が選んだベストアンサー

  • ベストアンサー
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

当方は工学系なので、数学専門ではなく数学利用者であることを始めににお断りしておいて・・・、 全くの当方の主観ではあるが、数学専攻者の方々は、「代数学を駆使出来る人達」というイメージ(・・というか印象)を持っている・・・・! ・・・んで、その「代数学」であるが、「数学入門辞典」によれば・・・、 (今日の)-----代数学は代数系を研究する学問であると言う事が出来る------ (代数系:数の四則演算の一部と演算法則を抽象化した構造を持つ集合(群,環,体など)のこと) ・・・と書かれている。 (所望の答えに辿り着いていないとは思うが、ご容赦!)

gsb57529
質問者

お礼

回答ありがとうございます。 色々な辞典がるのですね!!

関連するQ&A

  • 高校数学の解析、代数に含まれる単元

     数学I 数と式 方程式と不等式 2次関数 三角比   数学II  式と証明・高次方程式 三角関数 指数関数・対数関数 微分法・積分法    数学III  関数 極限 微分法とその応用 積分法とその応用   数学A 集合と論理 個数の処理 確率 平面図形   数学B 数列 平面上のベクトル 空間のベクトル   数学C 行列とその応用 式と曲線 確率分布 統計処理 上記の高校の数学の内容は全て解析、代数のどちらかに分類できるのでしょうか? 解析、代数のどちらにも該当しない場合はその単元を教えていただきたいです。 よろしくお願いします。

  • cos 20°を代数的に求める

    僕は今三角関数の値を近似値を用いずに代数的に求めることに挑戦しています。それで、3の倍数の角度については、正五角形の対角線の長さを利用して求めることができました。 そこで、今度は3の倍数でない20°のときの値を求めようと思って、以下の式を作ってみました。 cos 20°は、三倍角の公式より、 cos 3*20°=4cos^3 20°-3cos 20° cos 60° =4cos^3 20°-3cos 20° 1/2=4cos^3 20°-3cos 20° 0=4cos^3 20°-3cos 20°-1/2 cos^3 20°-3/4 cos 20°-1/8=0 ここで、cos 20°をxとおくと、 x^3-3/4 x-1/8=0 (^3は3乗の意味です) つまり、この三次方程式を解けば、cos 20°の値を求められると思うのですが、これがどうもよく解りません。カルダノの公式を使っても、何だかよく分からない結果になります。 パソコンに計算させると、恐らくこの式であっていると思うのですが… この三次方程式は、どうすれば虚数無しに代数的に解けるのでしょうか? 教えてください。 別に何かの問題とかではなく、単なる趣味ですので、暇なときに回答してくれれば嬉しいです。

  • log2(3)は代数的無理数?

    超越数の定義について、高校時代は「どんな方程式の解にもならない実数のこと」と教わりました。 なるほど、ルート2はx^2=1の解だし、log2(3)は2^x=3の解だから「超越数ではない無理数、つまり代数的無理数」なのか・・・とそのときは納得したのですが、大学の数学の本を見ると、超越数の定義が高校時代に教わったのとは異なることに気づきました。 大学参考書には、超越数とは「どんな有理係数n次方程式の解にもなりえない実数」と書かれているのです。 有理係数n次方程式ということは、二次方程式とか三次方程式じゃないとダメですよね。2^x=3は有理係数n次方程式ではありません。 log2(3)は代数的無理数のはずですよね? だったら、log2(3)はどんなn次方程式の解になっているのでしょうか?

  • 高等学校数学の科目編成はどうあるべきだと思いますか。

    高等学校数学の科目編成はどうあるべきだと思いますか。 私案 基礎数学(5単位,必履修)…数式と集合(指数を整数全般に拡張することを含む),方程式と不等式,分数関数と逆関数(2次関数は中3),場合の数と確率,データの分析,三角比とその応用 代数・幾何I(2単位)…平面図形と式,平面上のベクトル,空間図形とベクトル 代数・幾何II(2単位)…平面上の曲線,行列,複素数平面 基礎解析(3単位)…三角関数,指数関数と対数関数,数列,微分法と積分法(体積を含む) 微分・積分(3単位)…極限,微分法とその応用,積分法とその応用(簡単な微分方程式を含む) ※基礎数学は第1学年に履修,代数・幾何Iと基礎解析は基礎数学の後に履修。 ※代数・幾何IIは代数・幾何Iの後に,微分・積分は基礎解析の後にそれぞれ履修。

  • 体について(代数学)

    代数学の問題で教えてほしいのですが、 Q(有理数)、R(実数)、C(複素数)は体となることを証明せよ。 なんですが、全部を示さずとも、C(複素数)さえ示せれば、あとはC⊂R⊂QよりR、Qについても言えると思うのですが、Cが体であるためにはどう示せばいいのかわかりません。体についての定義は分かっていますが、どんな式を加法、乗法、逆元の計算をすればいいのでしょうか?できれば解法を教えてください、お願いしますm(__)m

  • 数学1A~3Cのつながり教えてください

    数学IA・・・1 数と式 方程式・不等式 2次関数 図形と軽量・三角比 集合と論理 場合の数 確率 平面図形 数学IIB・・・2 方程式と式の証明 数列 三角関数 指数関数・対数関数 図形と方程式 微分法 積分法 ベクトル 数学IIIC・・・3 数列の極限 関数の極限 微分法と応用 積分法と応用 式と曲線 行列と応用 確率分布 (注1~3は、IAの範囲表記を簡略したもの) 現在独学を試みようかと思っているのですが それぞれの分野に必要な知識や独立しているものなんかもあって 勉強を進めていく上でグループごとに縦割りで勉強を進めていきたいのですが ここの知識とここの知識がつながっているから、これとこれと~まとめて勉強すると良いよ 見たいなのがあれば教えてください。 じょうきの分野は教材から抜粋したものです 教材も一応一通りそろえたので、勉強の計画を立てています。 一応私が考えた例ですと ・確率に関して 1集合と論理  場合の数 3確率確率分布 以上のようにしていただけるとよりわかりやすいと思います。 どうか、ご協力ください。

  • 数学の勉強方法について

    こんにちは。数学の勉強方法についてなのですが、 「和田式・数学は暗記だ!」というのを書店で見かけまして。 「計算系」「図形系」「確率系」に分けて 個別に一気に勉強するというのはどうなのでしょうか? 「計算」→数Iの方程式と不等式 2次関数      数IIの式と証明 複素数 図形と方程式 微分積分 「図形」→数Iの三角比 数IIの三角関数 指数対数 「図形2」→数Bのベクトル 数Cの行列 「確率」→数Aの倫理と集合 場合の和 数Bの数列 例えば、「計算系」であれば、数Iの計算分野、数IIの計算分野だけを やって、青チャに取り組む。といった感じです。 そして、「図形」であれば図形だけをやって、青チャに取り組むといった感じです。 自分は、中学の復習から始めており、まだ図形・確率が終わっていません。 「計算系」を終わらせてから、図形に入りたいと思っています。 その際は、図形は中学の復習から入ります。 「計算系」の分野にも「図形」の知識は必要でしょうか? 中学の図形・確率を終わらせてからのほうがよろしいのでしょうか? ご教授おねがいします。

  • 高校の数学1A2Bで難しいと思う単元

    大学受験へ向けた高校数学1A・2Bで、皆様が難しいと思う単元を、難しい順に並べてみてください。 理由なども含まれるとより参考になります。 (1)数と式 (2)二次関数 (3)三角比 (4)集合と論理 (5)場合の数・確率 (6)平面図形 (7)式の計算と証明(数と式II) (8)図形と方程式 (9)指数対数 (10)三角関数 (11)微分積分 (12)ベクトル (13)数列

  • 線形代数の問題が解りません。

    線形代数の問題が解りません。 線形代数の問題が解りません。 宜しかったら教えてください。 1.次のシステムを考える x(t)= A x(t) + b u(t)   ・・・I xに上点あり A=[1 0 0 0;0 -1 0 1;0 0 -1 0;2 0 -1 -1] b=[-1 1 0 -1]の転置 y(t)=c x(t)         ・・・II             c=[1 0 1 0] 1-1. このシステムの可観測行列をMとするとき、rank=2を示せ これは可観測行列M=[c cA cA^2 cA^3]の転置 となるので、行基本変形で M=[c cA cA^2 cA^3] =[1 0 1 0;1 0 -1 0;1 0 1 0;1 0 -1 0] ・ ・ ・ =[1 0 0 0;0 0 1 0;0 0 0 0;0 0 0 0] と変形でき、rankM=2となり、ここまでは何とかわかりました。 1-2.KerMの基底ベクトルω3、ω4を求めよ 1-3.ベクトルω1、ω2をω1、ω2、ω3、ω4がR^4の基底ベクトルとなるように定めよ 1-4.T=[ω1 ω2 ω3 ω4]とおく。状態変換x(t)=Tx(t) (右辺のxの上には~あり) によって、状態方程式Iと出力方程式IIはそれぞれどのような式へと変換されるか 1-5.このシステムの伝達関数を求めよ 1-6.システム(A,b,c)の極、および、伝達関数G(s)の極を求めよ 2.Mをk*l行列とする。 2-1 Mの像Im M がベクトル空間R^kの部分空間となることを示せ 2-2 Mの核Ker M がベクトル空間R^lの部分空間となることを示せ 1-5、6については 前の定義に システム(A,B,C)の伝達関数G(s)は G(s)=C(sI-A)^(-1)B= C adj(sI-A)B/det(sI-A) と表せるから s=pが伝達関数G(s)の極なら、s=pがシステム(A,B,C)の極である、 とあるのですが、よく意味が解りませんでした。関係がなかったらすみません。 どなたかわかる方がいましたら、一問でも構いませんので 具体的な解き方も含めて教えてください。 宜しくお願いします。

  • ベクトル空間 W が Lie 代数( Lie 環 ) であるとは

    ベクトル空間 W が Lie 代数( Lie 環 ) であるとは X,Y ∈W にたいして [X,Y] ∈W 演算が定義でき、 下の四つの関係式を満たすことであると、教科書は天下り的に示します。 1 [X+Y,Z] = [X,Z] + [Y,Z] 2 [aX,Y] = a[X,Y] a ∈R 3 [X,Y] = -[Y,X] 4 [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0 1,2,3 式の意味は解る気がします。Lie 群、Lie 代数は時間に依存して変化す る事象の代数的な性質を抽象的に抜き出したものだと思います。1,2 式は [X,Y] が bilinear な関係であることを意味していると思います。3式の反交 換関係は時間に方向性があることを反映しているのだと思います。 でも4式の意味が解りません。この式はどんな物理的な意味を持つのでしょう か。幾何的にどんな意味を持つのでしょうか。Poison Bracket がこの4式満 たすのは解りますが、この式を基本法則に持ってくる必然性が理解できません。 逆に1,2,3式のみで4式を必要としない空間は意味がない代数空間なのでし ょうか。 Lie 代数に詳しいどなたか、教えていただけますでしょうか。