• ベストアンサー

x+y+Z=7の負ではない整数の解は何個あるか?

orcus0930の回答

  • orcus0930
  • ベストアンサー率41% (62/149)
回答No.2

あなたの下の解法では,X=0になっちゃう場合があるでしょ? (|が端にくるのを許してるし,||みたいに|が並ぶのを許してるから) その場合を排除するように解き方を変えないといけない.

関連するQ&A

  • 整数解の個数

    不等式 (x/2)+(y/3)+(z/6)=<10 を満たす負でない整数の解の個数を求めよ xについて絞り込みを考えて、0=<x=<20, これで、x=0のとき、x=1のとき、・・・・x=20のとき と考えれば、個数はわかるが、こんな解法なはずはない。 この種の問題の数え方を教えてください。

  • 整数解

    -8 x^4-8 x^2 y^2+14 x^2 z^2-19 x^2-2 x y z^2+13 x y-8 y^4+14 y^2 z^2-19 y^2-6 z^4+15 z^2-6=0         の 全ての整数解を導出願います

  • 整数解の数

    1=<x=<10、1=<y=<10、1=<z=<10  x、y、z整数のとき、 x+y+z=15を満たす解(x,y,z)は何組あるか。 当然ながら、範囲に10以下がなければ、14C2になると思うが、 10の範囲がある場合うまい数え方がないか、教えてもらえればと思います。

  • x^y=y^x (x>y)を満たす整数解は、x=4,y=2以外にありま

    x^y=y^x (x>y)を満たす整数解は、x=4,y=2以外にありますか? また、この解の求め方が分る方がいらっしゃったら教えて下さい。

  • 整数解

    c: 141 x^2+10 x y-4 x-15 y^2-10 y-1=0 此れの 整数解を全て求めて下さい;

  • 整数解は何通りか。

    yx^2+xy+x^2-2y-1=0 の整数解の組は何通りか。 xの方程式とみて、整数解が存在するための条件を 判別式からもとめて、解になる候補を絞り込んでいこう と考えましたが、堂々巡りの状態です。 この方針での解法でも、またそうでなくとも お願いします。

  • 方程式の整数解

    ”rを自然数とする。 連立方程式 x^2+y^2+z^2=1/3(r^2+2)…(1) x+y+z=r…(2) の整数解を決定せよ。” という問題です。 僕は (2)を(1)に代入して 3(x^2+y^2+z^2)=(x+y+z)^2+2=x^2+y^2+z^2+2xy+2yz+2zx+2 として、さらに同値変形で (x-y)^2+(y-z)^2+(z-x)^2=1 としました。 x-y、y-z、z-x は全て整数で、 (x-y)+(y-z)+(z-x)=0 であることから x-y=1,y-z=0,z-x=-1 となります。(x,y,zの対称性からこの場合だけ考えれば十分) これからx,y,zは一般にtを実数として x=t+1 y=z=t となります。 これと x+y+z=r から t=1/3(r-1) となったので、r≡1(mod.3)のときのみ題意を満たす(x,y,z)は存在して {x,y,z}={1/3(r+2),1/3(r-1),1/3(r-1)} である。 としました。 自分でいうのも何ですが、解法があまりにも巧すぎて、他の問題で使えそうにありません。 もっと自然な発想で解くことはできないでしょうか? よろしくお願いします。

  • ∂f/∂x=∂f/∂yの表される解を考えてみました

    ∂f/∂x=∂f/∂y ・・・・・・・(1) の解について (1)を満たす解f(x,y)はz=x+yとしてf(x,y)=C(z) (C(z)はzについて微分可能な任意関数)である。 しかしこの解がそれ以外で表されるか否かというのを考えてみました。 (考察) f(x,y)が(1)の解であるならば、zを任意の定数として固定してy=-x+zのとき 合成関数の微分法を用いて df(x,-x+z)/dx=0 である。 これをf(x,-x+z)について解くと、f(x,-x+z)=C(z) (C(z)はzのみに依存する任意関数) すなわち df(x,-x+z)/dx=0 ⇔ f(x,-x+z)=C(z)                    ⇔ f(x,y)=C(x+y)  ・・・・・・・・・・・(2) しかし(1)に代入するとC(x+y)はx+yについて微分可能でないといけないことが分かるので 結局(2)は  df(x,-x+z)/dx=0 ⇔ f(x,y)=C(x+y) (C(x+y)はx+yについて微分可能な任意関数) ・・・・・・(2)' となる。 逆に(1)を満たす解の中でf(x,y)=C(x+y)の形以外の適当なx,yに依存する関数F(x,y)を考える。 y=-x+z(zは任意定数)と制限されれば x+yのみに依存する任意関数C(x+y)をとっても F(x,y)≠C(x+y)であるから (2)'からdF(x,-x+z)/dx≠0     つまりy=-x+zのとき dF(x,-x+z)/dx=∂F/∂x+dy/dx・∂F/∂y=∂F/∂x -∂F/∂y≠0 で このときF(x,y)は(1)を満たさない。 したがって(1)を満たす解はz=x+yとして f(x,y)=C(z) (C(z)はzについて任意の微分可能な関数)でしか表せない事が分かった。 この説明方法に誤り、アドバイスあれば指摘してください。 問題は(1)の解でy=-x+zと制限すれば必ずdf(x,-x+z)/dx=0なるという情報が分かっている。 F(x,y)をy=-x+zで制限されたときF(x,-x+z)/dx ≠0だから(1)はこのとき満たされないため f(x,y)=C(x+y)のみしか表せないと考えたのであるが、それでよいかどうか。 fが(1)の解 ⇒ y=-x+zのとき df(x,-x+z)/dx=0 これより  y=-x+zのときdF(x,-x+z)/dx≠0 ⇒ Fは(1)の解でない  だから (1)の解はf(x,y)=C(x+y)のみというのが自分の考え。

  • 整数解

    c; 9362 x^4+37451 x^3 y-90567 x^3+7914 x^2 y^2+274429 x^2 y-31214 x^2-1597 x y^3+160573 x y^2-94673 x y+6905 x-882 y^4+28793 y^3+51902 y^2-3695 y-650,9362 x^4+37451 x^3 y-90567 x^3+7914 x^2 y^2+274429 x^2 y-31214 x^2-1597 x y^3+160573 x y^2-94673 x y+6905 x-882 y^4+28793 y^3+51902 y^2-3695 y-650=0 c 上 の全ての整数解をお願い致します。

  • 整数解

    c; 9362 x^4+37451 x^3 y-90567 x^3+7914 x^2 y^2+274429 x^2 y-31214 x^2-1597 x y^3+160573 x y^2-94673 x y+6905 x-882 y^4+28793 y^3+51902 y^2-3695 y-650,9362 x^4+37451 x^3 y-90567 x^3+7914 x^2 y^2+274429 x^2 y-31214 x^2-1597 x y^3+160573 x y^2-94673 x y+6905 x-882 y^4+28793 y^3+51902 y^2-3695 y-650=0 c 上 の全ての整数解をお願い致します