• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:代数学の問題)

代数学の問題: Let p be a prime and let G be the additive group (Z_p×Z_p,+) - 質問

muturajcpの回答

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.3

G=(Z_p×Z_p,+) (1)Gの位数pの部分群は次の p+1 個 <(1,0)>,<(1modp,ymodp)>_{1≦y≦p-1},<(0,1)> 2≦x≦p-1,1≦y≦p-1,に対して xとpは互いに素だから1=nx-pとなる自然数nがある 1<p/(p-1)≦p/x<n≦(1+p)/x≦(1+p)/2<p nx=p+1 だから n(xmodp,ymodp)=(nxmodp,nymodp)=(1modp,nymodp) (xmodp,ymodp)は(1modp,nymodp)が生成する巡回群を生成し位数が等しいから <(xmodp,ymodp)>=<(1modp,nymodp)> (2)x≠y∈G,x+H=y+H,|H|=p,H⊂G,となるHは<(x-y)>ただ1つとなる x-y∈Gとするとx-y∈<x-y>だからx+<x-y>=y+<x-y>,|<x-y>|=p x+H=y+Hとすると x-y∈H だから<x-y>⊂H,|<x-y>|=p=|H|だから<x-y>=H 例えばZ_4=Z_2×Z_2で(0mod2,1mod2)を生成元とする巡回群<(0mod2,1mod2)>は <0mod2,1mod2>={(0mod2,1mod2),2(0mod2,1mod2)=((2*0)mod2,2mod2)=(0mod2,0mod2)}で これはZ_2×Z_2の単位元(0mod2,0mod2)を含んでいるので Z_p×Z_pの部分群になる。

Dominika
質問者

お礼

どうも有難うございます。お蔭様で漸く解決できました。m(_ _)m

関連するQ&A

  • 代数学の問題です

    G:群 |G|=45に対し、G=S3×S5となることを示せ。 S3:シロ―3部分郡 S5:シロ―5部分郡 シローの定理が必要だとおもうのですが。。。 <シローの定理> (1)p^r | |G| ==> Gは位数p^rの部分群をもつ よってシローp-部分群は存在する (2)H: Gのp-部分群とすれば Hを含むシローp-部分群が存在する (3)シローp-部分群は互いにG共役 (4)シローp-部分群の個数は 1+k*p の形 (k∈Z,k≧0) よろしくお願いします。

  • 代数学・群の英文での問題!!

    Let G be a group, and H a subset of G. We shall say that H is a subgroup if it contains the unit element, and if, whenever x,y∈H, then xy and x^(-1) are also elements of H. (Additively, we write x+y∈H and -x∈H.) Then H is itself a group in its own right, the law of composition in H being the same as that in G. The unit element of G constitutes a subgroup, and G is a subgroup of itself. ※ x^(-1)はxの逆元 という問題があります。 G:群,H:Gの部分群 部分群は x,y∈H ⇒ xy∈H かつx^(-1)∈H が成り立つ。 加法の時はx+y∈H, -x∈Hである。 までは自分で訳せました。でも、Thenからよく分かりません。 合成の方法が同じ?それ自身の部分群?とか変な訳になってしまいます。 ここまでの訳があっているか、Then以下はどう訳すか 分かる方教えてください!!お願いします!!    

  • 至急お願いします。代数学の問題です。

    (1)(1+240Σ_(n=1,∞)σ3(n)・q^n)^3 - (1-504Σ_(n=1,∞) σ5(n)・q^n)^2 =(1+240X)^3 - (1-504Y)^2 ≡2^4・3^2・(5X+7Y) (mod12^3) これより、5・σ3(n)+7・σ5(n)≡0 (mod4) と≡0 (mod3) を証明せよ。 定義 Γ ⊂ SL2(R) が合同部分群 ⇔ ∃n ∈ N s.t. Γ(n) ⊆ Γ ⊆ SL2(Z) SL2(Z)=Γ(1) (level1) (2)SL2(Z) / Γ(n) = SL2(Z/NZ) を証明せよ。 (3)(2)の位数が(N^3)・Π_(P|n) (1-1/(P^2))となることを証明せよ。 よろしくお願い致します。

  • 代数の問題です。

    大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 代数の問題です。

    加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 代数学の問題なのですが、

    代数学の問題なのですが、 G=〈x〉を位数n<∞の巡回群とする。mは自然数でnはmZに属する元で位数mの部分群がただひとつ存在することを証明せよ。 という問題なのですが教えてください。

  • 代数学の問題

    1.A=(1,2,3) B=(1,2,3,4)のとき、AとBは1対1対応にならないことを示せ 2.準同型写像f:G⇒G'において像f(G)はG'の部分群であることを示せ。 3.群Gの中心ZはGの正規部分群であることを示せ。 4.NをGの正規部分群、PをGの一つのpシロー群とすると、NP/NはG/Nのpシロ  ー群であることを示せ。 レポート問題を合格はしていますが、ここの問題を白紙で出して合格したので結局わからないまま講義を終えてしまいました。 教科書を読んでもよくわからないので、解説をお願いします。

  • 次の代数学の真偽を教えてください。(理由も添えて)

    1.位数が素数である有限群は巡回群である。 2.有限アーベル群はすべて巡回群である。 3.巡回群はすべてアーベル群(=可換群)である。 4.Z/4ZとZ/2Z×Z/2Zは共に位数4のアーベル群である。 5.Z/4ZとZ/2Z×Z/2Zとは同型な群である。 6.アーベル群の部分群はすべて正規部分群である。 7.位数が同じ有限群GとG'は同型である。 8.位数が素数である有限群はアーベル群(=可換群)である。

  • 代数学の、群の問題を教えて下さい。

    nは正の整数とする。Gは位数nの巡回群とする。この問題では、GはZ/nZに同型であることを示す。 (1)Gの生成元xをとり(つまりG=<x>)、群の準同型定理f:Z→Gをm∈Zに対してf(m)=x^mで定める。このときfは全射であることを示しなさい。またKerf=nZであることを示しなさい。 (2)fに準同型定理を適用して、Z/nZ≃Gを示しなさい。 という問題です。お願いします。

  • 位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでし

    位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでしょうか? シローの定理が必要だとおもうのですが。。。 <シローの定理> (1)p^r | |G| ==> Gは位数p^rの部分群をもつ よってシローp-部分群は存在する (2)H: Gのp-部分群とすれば Hを含むシローp-部分群が存在する (3)シローp-部分群は互いにG共役 (4)シローp-部分群の個数は 1+k*p の形 (k∈Z,k≧0)