• ベストアンサー

にゃんこ先生の自作問題、立方体の影(の一部)から元の立方体を復元するには

tomtom_の回答

  • tomtom_
  • ベストアンサー率39% (43/110)
回答No.4

コンピュータ・ビジョンという分野の問題です. 「"Shape from shadow" ビジョン」などというキーワードで検索なさってみてはいかがでしょうか.

関連するQ&A

  • 回転運動のベクトルについて

     今力学の学校のプリントの問題を解いているのですが、解を見ても分からないところがあるのでどなたかアドバイスをください。  回転運動を表すのに各ベクトル表示が x(→)方向のベクトルをi y(↑)方向のベクトルをj と置いているのですが、これは分かります。しかし回転運動(角加速度α)のベクトルを kと置いています。(αk)  教科書を見ると通常kというのはi,jと直交するベクトルなので、紙面に垂直なベクトルになると思うのですが、回転方向は問題では紙幣平面に反時計回りです。  また外積i×k=j j×k=-i としています。何故-が出てくるのでしょうか? 分かりにくい質問かと思いますすが、よろしくお願いします。

  • 解説してください

    平行6面体の体積を ±(v×w)・uとあらわせることを証明する 問題で以下のように回答をいただいたのですが1部分分かりません。 教えてください。 ーもらった解答ー vとwのなす角度をφとするとき 外積の大きさは ∥v×w∥=∥v∥×∥w∥×sinφ 外積のベクトルはvに垂直で、かつ、wに垂直なベクトルとなる。すなわち、vとwで作る平面に垂直となるベクトルである。 ベクトルuと(vとwで作る平面)の角度をθとする uと(v×w)の角度は90度-θ又は90度+θとなる。 角度が90ーθのときの体積は以下である。 体積=∥S∥×∥u∥sin(90-Θ) ←ここの部分が分からないです。   =∥S∥×∥u∥cosθ   =(v×w)・u となる。 角度が90+θのときの体積は以下である。 体積=S×∥u∥sin(90+Θ)   =S×∥u∥(-cosθ)   =-(v×w)・u となる。 体積は±(v×w)・u となる。 途中矢印を入れさせてもらった部分がなぜそれを代入するか分かりません。 その代入ではhではなくvとwで構成される平面に平行になる部分の長さになってしまう と思うのですが解説していただけますか?

  • 線形代数の正射影について

    問題をといてて途中でつまずいてしまいましたできれば教えてもらいたいです。 問題 a1=(1,-1,0),a2=(1,0,-1),a3=(1,-1,-1)にたいして次の問いに答えよ (1) a1,a2を用いて、正規直交系u1,u2を作れ (2) a3をa1,a2で定まる平面Vに正射影したベクトルa'3を求めよ (1)は解けたのですが...Ans u1=1/√2(1,-1,0) u2=1/√6(1,1,-2) あってるかは不明です(すいません) (2)のとき方がどうしてもわかりません 誰か教えてください

  • 線形代数の問題です

    3次元空間R^3の点をxyz座標を用いて縦ベクトル (ベクトルx)=(x,y,z) ∈R^3によって表示する 以下ではR^3内の二つの平面、α:z=0、 β:x+y+z=0への直交射影を考える。 以下の手順で平面βへの直交射影が次式で与えられることを示せ (1)点(ベクトルx)を通る直線:(ベクトルx)+t(ベクトルu) (t∈R) が平面βと直交したとする。このような(ベクトルu)を求めよ (2)(ベクトルx)から平面βへの垂線の足(ベクトルb)を求めよ この2問がどうしてもわかりません。 どなたかご回答よろしくお願いします

  • 外積A×Bの単位ベクトル

    外積A×Bの単位ベクトル 大学一年で力学の講義を受けているのですが、数学の基礎ということでベクトルをやっています。そこで演習としてベクトルの外積の問題が出されたのですが分からなかったことがあったので質問します。以下が出された演習問題です。 2つのベクトルA=i+2j+√3k,B=-2i-j+√3k が直交座標系Oxyzで表わされている。ここで直交座標系Oxyzの基本ベクトルをi,j,kとする。外積A×Bの単位ベクトルを求めよ。 自分の考えでは外積A×Bの単位ベクトルということはおそらくA×B/|A×B|で求められると思うのですが|A×B|はどうやって求めるのでしょうか?自分が知っているのは|A×B|=|A||B|sinθしかないため、どう求めるかわからないのでどうか解法を教えていただきたく思います。 見づらい記述とは思いますがよろしくお願いいたします。 ちなみに一応√はルート、||は絶対値のつもりで書いています。

  • ベクトル解析の面積ベクトルを学習しているのですが

    ベクトル解析の面積ベクトルの正射影の面積について XYZ空間内に平面πを定めてこのπ上に平曲線cで囲まれる図形をDとおきその面積をsとおく。  このとき、平面πに垂直で大きさ1の正の向きのベクトルを単位法線ベクトルと呼び、これをnと表すことにする。すると面積ベクトルS=snとなる。このときn=[cosα,cosβ,cosγ](0≦α≦π,0≦β≦π,0≦γ≦π)さらに、基本ベクトルi=[1,0,0],j=[0,1,0],k=[0,0,1]とするとDのxy平面への正射影の面積は|i・S|=s|cosα|となる。 (jS,kSは省略) ここで、平面πの定め方について疑問があります。まずxy平面と平行な平面πを考えます。 このとき単位法線ベクトルnはz軸と平行です。 そしてここからが問題ですが、平面πを生成するベクトルを考えます。このベクトルの中のひとつをaベクトルとしてaベクトルとx軸との角度はαとします。そして、aベクトルを回転軸に平面πを回転させます。こうすると、この平面πはαβγだけで表すことができるのでしょうか? また、正射影を考えたときにその面積は、|i・S|=s|cosα|にはならないと思うのですが勘違いしているかもしれないので、どなたか詳しく教えて頂けないでしょうか?

  • 外積に関する質問です。

    外積に関する質問です。 ベクトルaとベクトルbが接していない場合には外積って計算できるんでしょうか? 内積は正射影なのでベクトルaとbが接していなくても出来ると思うのですが、 外積はどうでしょうか?

  • 部分空間と、その直交補空間への距離について

    現在、大学の講義で部分空間と、それに対する直交補空間について学習しています。 そこで、部分空間を張るベクトルをU = {u1, u2, ... ,un} (u1~unは縦ベクトル)とした場合、 その部分空間への射影行列は P = U*U^t (^tは転置)で表され、それと対応する直交補空間 への射影行列はP⊥= I - P(I は単位行列)となると習いました。 また直交補空間への射影成分の距離d⊥は  (d⊥)^2 = || P⊥*x ||^2 = x^t *(I - U*U^t)*x であると習いました。 ここで質問なのですが、上の距離の式の"x"とはどのようなデータですか? また、上の式はノルムの二乗となっているので、距離は常に正の数ということになりますか? 色々と質問してしまい、すみません。よろしくお願いします。

  • 空間ベクトルと線形独立の条件?

    ベクトルの成分の条件がわからないので質問します。 uべクトルを→uと書きます。また内積の記号は・を使います。お願いします。 xyz空間の点Pを通り、2つの空間ベクトル→u,→vに直交する直線を求めよ。 解答、P(a_1,a_2,a_3)、→u(u_1,u_2,u_3)、→v(v_1,v_2,v_3)としましょう。求める直線の方向ベクトル、つまり直線と同じ向きを向いたベクトルの1つを、 →w(w_1,w_2,w_3)とおきます。すると→wと→u、→vと直交するので、 →w・→u=→w・→v=0が成り立ちます。これを成分で表すと、 w_1u_1+w_2u_2+w_3u_3=0・・・(1) w_1v_1+w_2v_2+w_3v_3=0・・・(2)ここからがわからないところです。 いまu_1v_2-u_2v_1≠0が成り立つとしましょう。これは平面ベクトルで →u(u_1,u_2)、→v(v_1,v_2)が線形独立であるための必要十分条件なので、空間ベクトルでつかっていいとは思えません。本では、すると(1)*v_2-(2)*u_2を計算して、w_1=-(u_3v_2-u2v_3)*w_3/(u_1v_2-u_2v_1)。同様に(1)*v_1-(2)*u_1より w_2=-(u_3v_1-u1v_3)*w_3/(u_2v_1-u_1v_2)がえられ、そこで、w_3=u_1v_2-u_2v_1とすると、 →w=(u_2v_3-u_3v_2,u_3v_1-u_1v_3,u_1v_2-u_2v_1)と方向ベクトルを求めています。 いまu_1v_2-u_2v_1≠0が成り立つとしましょう。なぜこのような条件がつけれるのか説明してください。お願いします。

  • 【院試 線形代数】線形写像、正射影がわかりません。

    線形代数のベクトルを像の作る平面への正射影の考え方がわかりません。問題文に関しましては、画像を添付させて頂いています。(1),(2),(3)の回答の作成の方をお願いします。確認としまして(1)で、ImA=(1,3,1)t,(2,6,1)の2つのベクトルで正しいでしょうか?ImAが互いに直交するのはシュミットの正規直交化でよろしいですか?(2)からは本格的にわかりません。よろしくお願いします。