• ベストアンサー

開集合である事の示し方って?ハテ

宜しくお願い致します。 [問]連続関数f:R→Rに於いて,A:={x∈R;f(x)<e^x}はRで開集合となる事を示せ (Rは実数体) という問題なのですがこれはどうやって示せばいいのでしょうか? 因みに開集合の定義はIntA=A (IntA:={x∈R;xはAの内点})です。

  • mk278
  • お礼率61% (279/456)

質問者が選んだベストアンサー

  • ベストアンサー
  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.2

>A=g^-1({x∈R;x<0})はどうやって示せばいいのでしょうか? すごく簡単です。

mk278
質問者

お礼

逆像の定義から確かにそのようにいえますね。 納得できました。どうも有り難うございました。

その他の回答 (1)

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

A はある連続関数の逆像になっています。

mk278
質問者

お礼

有難うございます。 「fが連続⇔fによる開集合の逆像も開集合」 という命題を使えばいいのですね。 Aは "連続写像g(x):=f(x)-e^xの像での開集合{x∈R;x<0}の逆像" になっていると思います。 つまり、A=g^-1({x∈R;x<0}) でも A=g^-1({x∈R;x<0})はどうやって示せばいいのでしょうか? (そう簡単に示せそうに有りません)

関連するQ&A

  • U^cが閉集合ならばf^-1(U^c)が閉集合になるのは何故?

    連続の問題です。 [問]E⊂R:実数体,f:E→Rとする時、 R⊃∀F:閉集合に対しf^-1(F)はEの閉集合⇒fがEで連続 を解いています。 ∀U⊂Rを開集合とするとU^cは閉集合となる。 x∈f^-1(U^c) ⇔f(x)∈U^c ⇔¬(f(x)∈U) ⇔¬(x∈f^-1(U)) ⇔x∈(f^-1(U))^c よって(f^-1(U))^c=f^-1(U^c)は閉集合である。f^-1(U)は閉集合だからfは連続。 という証明を見つけました。 ところで (f^-1(U))^c=f^-1(U^c)となる事は分かったのですが U^cが閉集合ならばf^-1(U^c)が閉集合 になるのは何故なのでしょうか?

  • 開集合

    a=(a1,a2,…,an)がR^nに含まれδ>0のとき Bδ(a)={x;||x-a||<δ} は開集合であることを示せ。 この問題なんですけど 与式=Dとすると点aのδ近傍はDに含まれるので点aはDの内点で任意の点なのでDは開集合である で合ってますか?あんま自信ないもんで…間違っていたらご教授願います。

  • 集合の問題!

    集合の基礎的な問題です。 わからなくてかなり困っています! 明日テストがあるので、これらの問題をどうしても理解したいです。 自分で解いてみたのですが、以下のことくらいしかわかりませんでした。 たぶん証明を見れば理解できると思うので、至急回答お願いしたいです。 よろしくお願いします!!>< <問題> 問1:FがΩの集合体であるとき、次を示せ。 (1)Ω∈F (2)A,B∈Fならが、A⊂B,A\B,AΔB∈F (3)A1,A2,…,An∈Fならば、∪(i=1,n)Ai,∩(i=1,n)Ai∈F 問2:集合X,Yの濃度が同じである、すなわちX~Yは同値関係であることを示せ。 問3:ベルンシュタインの定理を用いて、次を示せ。 (1){x|0<x≦1}~{x|0≦x≦1} (2){(x,y)|0<x≦1,0<y≦1}~{x|0≦x≦1,0≦y≦1} (3)a<bであるとき、[a,b]~R^2 (4)a<bであるとき、[a,b]~D 但し、D⊂R^2でDは少なくとも1つの内点をもつ。 問4:Fをσ集合体とするとき、以下を示せ。 A1,A2,…,An,…∈F ⇒ ∪(i=1,∞)Ai∈Fとするとき    (i)∩(i=1,∞)Ai∈F    (ii)lim(n→∞)supAn∈F ※問4は記述がわかりづらいですが、A1から始まる無限大の和集合がFに含まれる、(i)はA1から始まる無限大の積集合である、という意味です。(ii)はn→∞がlimの下にくれば正しい記述になります。問1の(3)の記述も同じくです。 <考えたもの> 問2:X~Yということから濃度の定義より、XとYの間には全単射がX→Yが存在する。その上で、反射律・対称律・推移率を示せばよい。 という考えまでは至ったんですが、やってみようとしてもここからの証明の仕方というか記述の仕方がわかりません… 問4:(ii)は、lim(n→∞)supAn∈F=∩(i=1,∞)(∪(i=1,∞)Ai):上極限集合 なので、これがFに含まれることを証明すればいいんだろうとは思うのですが記述の仕方がいまいちわかりません。(i)もどのように記述していけばよいのでしょうか? 問1、問3は証明の見通しが立ちません…。 特にこの2つがわからないです。

  • 連続関数

    以下の問いについて、f(0)を定義してR上で連続関数にできるかお答えいただきたい。 f(x)=(e^1/x)-1/(e^1/x)+1 lim f(x)=f(a) ならばx=aで連続というのは分かるのですが。 x→a

  • わかりません!集合と位相

    集合と位相についての質問です。 問 Xを空でない集合、関数d:X×X→Rを   d(x,y)={1(x≠y)        0(x=y)   で定義する。このとき、dはX上の距離関数になることを示せ。   また、Xの点xに対してN(x;0.5),N(x;1),N(x;2)をそれぞれ求めよ。 一応ここまでは解けたのですが、 問 上の問よりdから定まる開集合をθとする。   このとき∀M⊂Xに対して、M∈θとなることを示せ。 この追加の問題がよくわかりません。 解答、アドバイス、なんでもいいので出来るだけ早めに回答をお願いします。初めてなので読みにくいかもしれませんが宜しくお願いします。

  • このような関数が可測関数である事の証明がわかりませ

    宜しくお願いいたします。 B(C)を複素数体C上のボレルσ集合体を表すものとします。 更にE,F∈B(C),p∈F,f:E×F→Cは(E\N)×Fで連続とし(Nは零集合),fはpで偏微分可能とします。 g:E→[0,+∞)をE∋∀x→g(x):=sup{|(f(x,y)-f(x,y_0))/(y-y_0)|∈R;y∈F}と定義します。 この時,gは可測関数である事を証明するにはどうすればいいでしょうか?

  • 積分可能、不可能について

    fを[a, b]で定義された単調関数とするときfの不連続点は高々可算個です. 1点集合は零集合であり,零集合の可算和も零集合となるので, fは[a,b]でリーマン可積分といえますよね。 それでは何故f(x)=1/xは[0,1]で定積分不可能なのでしょうか? 不連続な点はx=0の時だけなので、「fの不連続点は高々可算個」という 上の条件を満たしていると思います。 どなたか誤りの指摘、または解説をよろしくお願い致します。

  • 測度・ルベーグ測度について

    以下の問題がよくわからないので質問します。 (1) f:R→Rを単調増加な右連続関数とする。 (⇔f(x+0)=f(x),x∈Rかつ、x<yならば、f(x)<=f(y)が成立) f(∞)=lim(R→∞)f(R) f(-∞)=lim(R→-∞)f(-R)で定義する。 -∞<=a<b<=∞に対して、ρ((a,b])=f(b)-f(a)でρを定義すると、ρはA_R上の測度である。 カラテオドリ・ハーンの理論により作られる可測集合の族M_fとこの上の測度μ_fを考える。 このとき一点から成る集合{a}は可測集合(M_fの元)であり、μ_f({a})=f(a)-f(a-0)であることを示せ。 (2) R^n上のルベーグ可測集合の族M_(R^n)とその上で定義されたルベーグ測度μ_(R^n)を考える。 a>0とR^nの部分集合Eに対して、M_aE={ax=(ax_1,ax_2,...,ax_n|x=(x_1,x_2,...,x_n)∈E}で定義する。 このときE∈M_(R^n)ならばM_aE∈M_(R^n)かつμ_(R^n)(M_aE)=a^nμ_(R^n)(E)であることを示せ。

  • "無理数全体の集合から実数全体への全単射が存在する"の証明の説明をお願いします。

    次の問題の解答で分からないところがあるので説明をしてもらいたいです。 問: 無理数全体の集合からRへの全単射が存在することを証明せよ 解: R-Q から R への全単射の存在を示せばよい R-Q は無限集合であるから、可算部分集合 A が存在する ここで Q は可算集合なので、A∪Q は可算集合 よって全単射 f: A→A∪Q が存在するので 関数 g:R-Q →Rを     g(x)= { x (x∈R-A)         〔 f(x) (x∈A) と定義すると g は全単射である ■ 最後のところで、なぜgを上のように定義すると全単射になるのかがわかりません。 よろしくおねがいします。

  • 位相(開集合を示す問題です)

    問 (X,d)を距離空間とする。    r>0、x₀∊X、Br(x₀):={y∊X|d(y,x₀)<r}と置く。   このとき、Br(x₀)は開集合であることを示せ。 開集合を示すから、Br(x₀)の要素aを任意に取ることをかんがえましたが、そのあとの解答の筋道、方針が分りません。ご教授願います。