• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:モデルの正式な立場、記述について)

モデルの正式な立場、記述について

itshowsunの回答

  • itshowsun
  • ベストアンサー率41% (15/36)
回答No.1

こんばんは。 この質問に直接回答してもいいのですが、 残念ながらそれはかなりの分量になります。 また、数学の基盤的かつ本質的な考え方を含むため、 それらの考え方を定義し、説明しなければなりません。 これは一冊の本になるでしょう。 面倒でしょうが、ご自分で、基礎数学の 「一階述語論理」(特に意味論) 「モデル理論」 を勉強した方がもっとも良い道だと思います。 簡潔ですが、ウィキペディアにも上の項目があります。 以上です。

student0201
質問者

お礼

 回答ありがとうございます。おっしゃるように私が伺っていることはの範囲は広くそれを学ぶには書籍等で体系的に学ぶべきということは理解しているのですが、いわゆる数理論理学の指南書においては上で質問したモデルと公理系の関係、モデルの説明のようなものはさらりと流されているような気がするのです。つまり私の聞いていることは一般的な数学の本道、関心事からずれているようで、そのような記述を持つ本、数学書を拝見したことがありません。さらにお願いを追加して恐縮ですが、そのようなことが書かれた適当な教科書、本があればできれば具体的な書籍名を教えていただければと思います。  貴重なご意見ありがとうございました。

関連するQ&A

  • 体系内で体系自身のモデルの存在を証明するとは

     「体系内でその体系のモデルを構成する」という文言をよく目にするのですが、これの意味するところが分かりません。これはどういった行為をいっているのでしょうか。もしくは自身のモデルの存在を証明できる、構成できる体系というのはどういったものなのでしょうか。  例えばZFCで存在が証明できる対象に、述語を加えてつくった〈M、∈〉が性質として(つくった実装側で)、ZFCの公理を満たす ということなのでしょうか  事実、ZFC内でZFCのモデルの存在証明ができないことは承知していますが、「体系内(ZFCに限らず)でモデルを構成できる」とはどういう状況を意味するのかを教えて頂きたいがために以上のような書き方をしました。  お時間あれば、ご教授よろしくお願いします。

  • PAの実装としてのZFC

    以前類似した質問をしており、また再質問になります、ご容赦ください。  1.PAのモデルには標準的なものと非標準的なものがあり、PA上の論理式では区別できないとよく目にします(だからこそ両方ともモデルといえる訳ですが) しかし、これらのモデルもなんらかの実装で再帰的に定義して扱わないと形式の守備範囲でなくなってしまい、「PAでは」区別できないということが何を表しているか分からなくなってしまうと感じます。 そこでZFCを実装として使うものと理解していたのですがこれは正しい理解でしょうか。 つまり標準モデルNも非標準モデルも 実装としてZFCを使って、再帰的に別々のものとして個々に扱えると考えてよいのでしょうか(再帰的とは文字列間の関係として定義して、というような意味で使っています)。 また上の質問とは関係なくて申し訳ないのですが、もう一つ教えていただきたいことがあります。  2.算術の言語における理論Kに対して新たに、個体定数cを加え、次の可算無限個の論理式を公理として加える(sは後者関数) c≠0、c≠s0、c≠ss0、c≠sss0、c≠ssss0・・・ そうして拡大した理論をK+とする などというのを良くみるのですが、 無限個の閉論理式を公理として加えるとは具体的にはどういう意味なのかということです。 理論にいわゆるシェーマというもので実質的に無限個の公理が含まれていることは認められるように感じるのですが、上の書き方では「・・・」の中に何が来るかが記述されてないように見えます(もちろんそれでも何が来るかは分かるのですが、論理式において見る側の類推に任せるというのは問題ではないでしょうか、しかし同時にどのような記述を採ったとしても見る側の類推に一切頼らないなどということはあり得ないのでは?とも感じるのです)。 例えば c≠0、c≠φが公理であるとすればc≠sφも公理である や c≠0、 ∀n(c≠n→c≠s(n)) などとしては意味がかわってしまうのでしょうか。(後者は強すぎる要請になってしまうのでしょうか)  懐疑論のような何を疑問に思ってるのかわかりにくい、そもそも疑問として成り立つのか怪しい質問と思いますが、 この方面に明るい方お時間に余裕があればよろしくお願いします。

  • スコーレムの定理の意味 論理式の表現の可能性

     以前、言葉尻の異なる同じような内容の質問をしております。ご容赦ください。    スコーレムの定理によりべき集合公理をもつ公理系にも可算モデルが存在する  無限体k上のベクトル空間の次元という概念は論理式では表現できない  ペアノ算術において自然数の非標準モデルが存在する  といったものから  モデル側の性質をすべて形式体系で書くことはできないということが結論されているのを見るのですが、自分としてはそのような形式体系で書くことができない性質があるということ、その性質について考えるとことが、なぜ記号を対象とした数学という分野でできるのかということが不思議なのです。  つまり(あくまで建前上ではですが)、イメージや心象を閉め出して形式的な文字列の変形、生成で議論できるはずの数学においては形式体系、公理系のモデルも結局何らかの形式的な文字列の変形、生成で定義される以外無いはずであって(モデルを決めるというのは形式体系側の記号や述語に、新しい記号や述語を対応させた新しい形式体系を実装として定めるということだと考えています) 例えば 実数の公理系の非可算のモデルの更なる可算モデルを考えると、そもそも非可算モデルとはなんだったのだろうか(何をもって非可算といっていたのだろうか もちろん元の体系内で、ある集合が可算無限の集合と1:1対応のつけられないということが証明できるということをもってなのでしょうが、しかしそれも体系の外に出てみると可算モデルになっていることがあるということならどこまで行っても本当に非可算かどうかを確かめることはできないのではないだろうか つまり何をもって非可算となすという基準が作れないように見え、それならば非可算というもの自体がどういうものかわからないのではないか なら最初の非可算モデルとはいったい何だったんだろうといったように) ベクトルの次元という概念も表現できる視点があって初めて、ある論理上では表現できないということが分かるのであってその表現できる視点というのも論理式の集合で書かれるしかないのではないか ならば次元という概念も論理式の集合で表現できることになるのでは 標準的な(N,0,1,+,・,<)のNも数学で考えるために論理式で定義されるものなら標準モデルだけを表す公理系があるのではないだろうか もしないならどうやって数学の議論の台に乗せるのだろうか などといった、おそらく擬似問題に悩んでしまうのです。  認識といってしまうといきなり怪しい話になってしまい恐縮ですが、「モデル側の性質をすべて形式体系で書くことはできない」ということは一見して数学の論理は、人間の心象、意味内容を全て認識することができないと受け取ってしまいそうになりますが、形式とモデルの関係はそのようなことをいっているのではなく、数学上の話である以上、体系間の関係のことをいっていると思うのですが正確にはどういうことを表しているのかわからないのです。 おおざっぱにいうと論理式で表せない性質があるということをいうためにはその性質を表すことが必要であり、数学においてはそれも論理式で書くことになると思うので、結局どういうことをしているのか混乱しているのです。  それとも最初に書いたようなことは人間側の推論と論理式での推論の関係(これは本当にイメージ心象と論理式の関係であって、想像上の集合、モデルと形式体系は1:1には対応しない)を、体系同士の関係で表した、まねさせたことから出てきた成果なので たとえば非可算かどうかを確認する絶対的基準なものがどこにあるかなどと言うことは意味をなさないのでしょうか。つまり実装(モデル)側で、ある論理式(可算性、非可算性に相当する)を証明できるものを可算モデル、非可算モデルという名前を付けているだけであって人間の使う非可算という意味とは(建前上は)関係がないということでしょうか。  もちろん例えば、自然数といわれればその意味するところはわかりますし、その自然数と同型でないモデルというのも色々なところで図などをつかって解説されている限り同型でないということや、どういうものかということは分かります、ただそれは明らかにイメージに頼ったものであって、厳密な意味での数学ではどうするのだろう(というか論旨式で表せないものを表すとは何だろう)と考え質問いたしました。 メタレベルと対象レベルを区別できてないが故の疑問だと感じているのですが、モデル(実装)にたいしても、その実装は?さらにその実装は?といっていくと結局非可算かどうかを区別できる視点などないのではないかということにならないのでしょうか? かなり初歩的な勘違いをしていると思いますが、この方面に明るい方、過去このような疑問を持たれた方、お時間ありましたら解答、解説お願いします

  • 形式化の表す内容について

     再質問になります。  以前、言葉尻の異なる同じような内容の質問をしております。ご容赦ください。    スコーレムの定理によりべき集合公理をもつ公理系にも可算モデルが存在する  無限体k上のベクトル空間の次元という概念は論理式では表現できない  ペアノ算術において自然数の非標準モデルが存在する  といったものから  モデル側の性質をすべて形式体系で書くことはできないということが結論されているのを見るのですが、自分としてはそのような形式体系で書くことができない性質があるということ、その性質について考えるとことが、なぜ記号を対象とした数学という分野でできるのかということが不思議なのです。  つまり(あくまで建前上ではですが)、イメージや心象を閉め出して形式的な文字列の変形、生成で議論できるはずの数学においては形式体系、公理系のモデルも結局何らかの形式的な文字列の変形、生成で定義される以外無いはずであって(モデルを決めるというのは形式体系側の記号や述語に、新しい記号や述語を対応させた新しい形式体系を実装として定めるということだと考えています) 例えば 実数の公理系の非可算のモデルの更なる可算モデルを考えると、そもそも非可算モデルとはなんだったのだろうか(何をもって非可算といっていたのだろうか もちろん元の体系内で、ある集合が可算無限の集合と1:1対応のつけられないということが証明できるということをもってなのでしょうが、しかしそれも体系の外に出てみると可算モデルになっていることがあるということならどこまで行っても本当に非可算かどうかを確かめることはできないのではないだろうか つまり何をもって非可算となすという基準が作れないように見え、それならば非可算というもの自体がどういうものかわからないのではないか なら最初の非可算モデルとはいったい何だったんだろうといったように) ベクトルの次元という概念も表現できる視点があって初めて、ある論理上では表現できないということが分かるのであってその表現できる視点というのも論理式の集合で書かれるしかないのではないか ならば次元という概念も論理式の集合で表現できることになるのでは 標準的な(N,0,1,+,・,<)のNも数学で考えるために論理式で定義されるものなら標準モデルだけを表す公理系があるのではないだろうか もしないならどうやって数学の議論の台に乗せるのだろうか などといった、おそらく擬似問題に悩んでしまうのです。  認識といってしまうといきなり怪しい話になってしまい恐縮ですが、「モデル側の性質をすべて形式体系で書くことはできない」ということは一見して数学の論理は、人間の心象、意味内容を全て認識することができないと受け取ってしまいそうになりますが、形式とモデルの関係はそのようなことをいっているのではなく、数学上の話である以上、体系間の関係のことをいっていると思うのですが正確にはどういうことを表しているのかわからないのです。 おおざっぱにいうと論理式で表せない性質があるということをいうためにはその性質を表すことが必要であり、数学においてはそれも論理式で書くことになると思うので、結局どういうことをしているのか混乱しているのです。  それとも最初に書いたようなことは人間側の推論と論理式での推論の関係(これは本当にイメージ心象と論理式の関係であって、想像上の集合、モデルと形式体系は1:1には対応しない)を、体系同士の関係で表した、まねさせたことから出てきた成果なので たとえば非可算かどうかを確認する絶対的基準なものがどこにあるかなどと言うことは意味をなさないのでしょうか。つまり実装(モデル)側で、ある論理式(可算性、非可算性に相当する)を証明できるものを可算モデル、非可算モデルという名前を付けているだけであって人間の使う非可算という意味とは(建前上は)関係がないということでしょうか。  もちろん例えば、自然数といわれればその意味するところはわかりますし、その自然数と同型でないモデルというのも色々なところで図などをつかって解説されている限り同型でないということや、どういうものかということは分かります、ただそれは明らかにイメージに頼ったものであって、厳密な意味での数学ではどうするのだろう(というか論旨式で表せないものを表すとは何だろう)と考え質問いたしました。 メタレベルと対象レベルを区別できてないが故の疑問だと感じているのですが、モデル(実装)にたいしても、その実装は?さらにその実装は?といっていくと結局非可算かどうかを区別できる視点などないのではないかということにならないのでしょうか? かなり初歩的な勘違いをしていると思いますが、この方面に明るい方、過去このような疑問を持たれた方、お時間ありましたら解答、解説お願いします

  • ZFCの論理式の表す内容について

    集合論と形式的な論理式の関係についてです、よろしくお願いします。 ZFCで扱われるのは煎じ詰めれば、有限の文字列(∋などを含んだ論理式)だと思うのですが、そんなZFCにより再帰的でない関数や実数から実数への関数全体などのいろいろな無限構造を表現し議論することが多いと感じます。しかし再帰的ですらない関数全体などを有限にすぎない記号列で表現できるのでしょうか。 つまりZFCはどうして十分な高い表現能力を持っているといえるのだろう、ということなのですが。 もちろん、そのような複雑な無限構造も考えたり、思い描いたりすることはできると思いますし、可能ならば数学的に扱えるようにしておくべきだとも思います。 誤解されるかもしれませんが、哲学的な話をしたいわけではありません。そうではなく、フォーマルな意味で有限の形式的な文字列がきちんと意図した構造を表現している、ということは数学的にはどのようにして保証されているのか、ということを伺いたいのです。

  • 無意味に真な命題に関して

    数学と論理学に絡んだ質問です。 1=1⇒素数は無限に存在する という命題は 数学的に「1=1」は真、「素数は無限に存在する」は真なので命題も真になるはずです。 しかし、あるところによれば、これは「無意味に真な命題」となっていると記述されています。もちろん、この命題が数学における証明に使えないのはもちろん理解できます。 では、数学において、どのような基準で意味があるかないかを判断するのか教えて下さい。その基準に公理などが関係ある場合はとくに明記していだだければ幸いです。

  • 言語としてのεと本物の包含関係∈の違いについて

    「数とは何かそして何であるべきか」や「ゲーデルと20世紀の論理学 4」などにおいて 集合論の言語として{ε}を用いる、ただしεは2変数関係記号である。体系の外で考えているとき、あるいは集合論のモデルで考えているときの、「本当の」要素関係∈と区別するためこの記号を使用する とあり、言語記号としてのεと実際の要素関係を表す∈を区別しています、しかしこの区別はどういう意味があるのでしょうか。 記号そのものと、それが表現するものの違いだ、と一旦は分かった気になるのですが、さらに考えてみると本物の要素関係∈なるものも何らかの公理と推論規則、つまり形式体系で書かれるしかないのではないか?ならばそれも言語記号と違わないのでは?と堂々巡りになっていますのです。(この二つの記号はいつも同じ内容を表すとは限らないために区別しているのだ、と考えても両者とも結局包含関係を表す訳で・・・、二者の間に意味の違いがあるという状況を想像出来ないのです。) また、 「体系の言語で記述される(内的な)無限降下列 とモデルでの無限降下列の区別」と http://kurt.scitec.kobe-u.ac.jp/~fuchino/foundation.html (渕野 昌先生) にある文章においても(同じことだと思うのですが、)悩んでおり、その区別がいかなるものか分かっていません。 「本物の」要素関係なるものが記述はされないが存在する などと言うことではないと感じるのですが・・・。 おそらくはじめの部分で勘違いをしていると思います、しかし、それがどういうものなのかはっきりしておらず苦しんでおります、この方面に明るい方助けていただければ幸いです。

  • 本物の要素関係∈と言語としてのεの関係

    再質問になります、御容赦ください。 「数とは何かそして何であるべきか」や「ゲーデルと20世紀の論理学 4」などにおいて 集合論の言語として{ε}を用いる、ただしεは2変数関係記号である。体系の外で考えているとき、あるいは集合論のモデルで考えているときの、「本当の」要素関係∈と区別するためこの記号を使用する とあり、言語記号としてのεと実際の要素関係を表す∈を区別しています、しかしこの区別はどういう意味があるのでしょうか。 記号そのものと、それが表現するものの違いだ、と一旦は分かった気になるのですが、さらに考えてみると本物の要素関係∈なるものも何らかの公理と推論規則、つまり形式体系で書かれるしかないのではないか?ならばそれも言語記号と違わないのでは?と堂々巡りになっていますのです。(この二つの記号はいつも同じ内容を表すとは限らないために区別しているのだ、と考えても両者とも結局包含関係を表す訳で・・・、二者の間に意味の違いがあるという状況を想像出来ないのです。) また、 「体系の言語で記述される(内的な)無限降下列 とモデルでの無限降下列の区別」と http://kurt.scitec.kobe-u.ac.jp/~fuchino/foundation.html (渕野 昌先生) にある文章においても(同じことだと思うのですが、)悩んでおり、その区別がいかなるものか分かっていません。 「本物の」要素関係なるものが記述はされないが存在する などと言うことではないと感じるのですが・・・。 おそらくはじめの部分で勘違いをしていると思います、しかし、それがどういうものなのかはっきりしておらず苦しんでおります、この方面に明るい方助けていただければ幸いです。

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 

  • 再帰的定義と体系の強さ

    再質問になります、ご容赦ください。 [ゲーデルに挑む 田中一之]のp152の記述に、形式的な定義は略記に限るものとし x^0=1 x^(y+1)=x^y・x のような再帰的な(略記でない)定義で論理式を形式体系に付け加えることは公理を増やすことに他ならず体系の強さが変わってしまう可能性がある とあるのですが、これはどういうことでしょうか。 つまり、再帰的定義は記号の使い方を定めているだけであり(上の例であれば、関数記号^の記号としての使い方)、この定義によって初めてその記号が登場してくるならば、それによって体系内で何か新しいことができるようになったりはしないと思うですが...。すなわち定義を追加するだけでは、公理を増やすことにはならず体系の強さも変わらないと思うのです(もちろん、定義するだけでなく、定義した記号に関する公理を追加すれば話は別ですが)。 この方面に詳しい方いらっしゃいましたらお助け下さい、よろしくお願いします。