• ベストアンサー

微分方程式 線形 非線形 その3

siegmundの回答

  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.1

> y’+(x/y)=1が非線形であることは理解できました。 > また、y’+y^2+xy=1も非線形ですね。 おっしゃるとおり,どちらも非線形ですね. > 前回の質問で、 > >(u-1)(v^2+v+1)w が、{ u,v } について 3 次であることも解りますか? > は3次であることは理解できます。 > { u,v,w}については4次ですね。 そのとおりですね. > y’+yx^2=1やy''+2x^2=yなどは、線形微分方程式ですね。 どちらも非線形です. y から見て定数項(最初の例では右辺の1,後の例では左辺の 2x^2) があると線形にはなりません. 微分方程式を満たす解が2つあったとします. これらを y_1,y_2 とします. で,y_1 + y_2 も元の微分方程式をみたすとき, 元の微分方程式は線形であると言います. (1) y’+yx^2 = 1 でやってみましょう. y_1 と y_2 が(1)の解だというのですから (2) y_1’+ y_1 x^2 = 1 (3) y_2’+ y_2 x^2 = 1 です. (2)(3)を辺々加えてみますと (4) (y_1 + y_2)' + (y_1 + y_2) x^2 = 2 となります. では,y_1+y_2 は元の微分方程式を満たしているでしょうか. Y = y_1 + y_2 と書きなおしてみれば (5) Y' + Y x^2 = 2 となりますので,Y は元の微分方程式を満たしません. もし(1)の代わりに (1') y’+yx^2 = 0 だったとすると,(5)に対応するのは (5') Y' + Y x^2 = 0 ですから,Y は元の微分方程式(1')を満たすことになります. つまり,(1)では右辺の 1 があるために微分方程式が線形でないのです. これが,上で 「y から見て定数項(最初の例では右辺の1,後の例では左辺の 2x^2) があると線形にはなりません.」 と言ったことの意味です.

関連するQ&A

  • 微分方程式 線形 非線形 その4

    与えられた問題の微分方程式が線形なのか非線形なのかは 理解できました。 >y についての微分方程式の次数は、 >y についての(代数的な)次数ではなく、 >{y,y',y'',y''',…}についての次数を見ます。 >それが 1 次式なら、線型微分方程式です。 と教えて頂き理解できました。 問題として当たったことはないのですが、 ・(y^2)’+xy=1は非線形微分方程式という認識で正しいでしょうか?    ・(logy)'や(siny)'などを含む微分方程式は非線形微分方程式と言う   認識も正しいでしょうか? 以上、何度も申し訳ありませんがご回答よろしくお願い致します。

  • 微分方程式 線形 非線形

    前回の質問の続きです。 前回の質問内容:http://okwave.jp/qa/q7818206.html ラプラス方程式が、2階線形偏微分方程式、 ポアソン方程式が、2階非線形偏微分方程式であることは 理解できました。ありがとうございます。 微分方程式で参考書やインターネットにあった線形微分方程式と 非線形微分方程式を以下に示します。 線形微分方程式 (1)y”+y’-2x=0 (2)y’+xy=1 (3)(x-1)y''-xy'+y=0 非線形微分方程式 (1)(y”)^2+y’-2x=0 (2)x(y”’)^3+y’=3 (3)y・y’+xy=1 上記、線形/非線形の分類に間違いはあるでしょうか? 非線形微分方程式の(3)y・y’+xy=1は、なぜ非線形となるのでしょうか? y・y’+xy=1⇒y’+x=1/y⇒y’+x-1/y=0は線形ではないでしょうか? 線形微分方程式(2)y’+xy=1も、xy’+xy=1となると非線形になるの でしょうか? ご回答よろしくお願い致します。

  • 微分方程式 線形 非線形 その2

    前回の質問内容で、 y・y’+xy=1 が非線形微分方程式であることは理解できました。 >yy' は、y と y' が 1 次づつの積で { y,y',y'',y''',… } については 2 次、 >xy' は、{ y,y',y'',y''',… } に含まれるのが y だけで 1 次です。 ご回答頂いた内容を整理している際に、疑問に感じた点があったので再度 質問させて頂きます。 y’+xy=1 は線形微分方程式ですが、 y’+(x/y)=1も線形微分方程式でしょうか? (x/y)は、yを1次として考えて線形微分方程式なのでは と考えたのですが、正しいでしょうか? 1/yは非線形になるのでしょうか? 同様に、 1/y’+xy=1は非線形微分方程式となるのでしょうか? 1/y,1/y’が線形なのか非線形になるのかがわかりません。 ご回答よろしくお願い致します。

  • 1階線形微分方程式

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題なのですが1階線形になることは示せたのですが、その次の1階線形微分方程式の解法がよく分かりません。 教えてください。よろしくお願いします。 ↓ y'-2y/x=xy^3 y'/y^3-2/xy^2=x u=1/y^2とおく ∴u'=-2y'/y^3 これを上式に代入すると -u'/2-2u/x=x ⇔u'+4u/x=-2x

  • 微分方程式

    y’-2/xy = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

  • <微分方程式>

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 この問題を教えて下さい。 よろしくお願いします。

  • 偏微分方程式

    偏微分方程式の問題についてです。 (1)u_xx+4u_xx+4u_yy=0を正規形に変換して解け。 v=x,z=2x-yと置いて解くのですが、この後どうやって解くのでしょうか? (2)xu_xy=yu_yy+u_yを解け。 を(1)と同じでv=x,z=xyと置いて解くのですが、この後どうやってとくのでしょうか?

  • 微分方程式

    微分方程式の x^2y''+xy'-y=0 や (1-x)y''+xy'-y=0 などのxが掛かっていて右辺が0である二階線形微分方程式の解き方がわかりません。 どなたか答えてもらえないでしょうか?

  • 2階線形微分方程式の置き換えについて質問です

    先日、2階線形微分方程式(未知関数y(x))の解法として、 u(x) = xy(x) …(a) としていた問題がありました。しかし、その問題集が現在見当たらず、どのような場合にこの置き換えが有効なのかがわかりません 手元にある常微分方程式に関する本を見ても載っていませんでした (a)の置き換えがどのような形の微分方程式に有効か教えていただきたいです また、(a)の置き換えが単なる私の思い違いの場合は、ご指摘をお願いします

  • 微分方程式

    (x-1)y''-xy'+y=0 この2階線形微分方程式(ですよね?)お願いします。