catbirdのプロフィール

@catbird catbird
ありがとう数5
質問数8
回答数11
ベストアンサー数
0
ベストアンサー率
0%
お礼率
15%

  • 登録日2007/11/01
  • カタランの予想が証明出来ました。

    aとbを自然数、xとyを2以上の自然数とする時、a[のy乗]-b[のx乗]=1の解は、a=3、b=2、y=2、x=3に限る、即ち3[の2乗]-2[の3乗]=1しかないとするのが、カタランの予想です。(便宜上aのx乗をa[のx乗]と表します) a[のy乗]-b[のx乗]=1を、(1)a[のy乗]-1=b[のx乗]と変形します。a[のy乗]とb[のx乗]を因数分解すると、双方素数の掛算になります。a[のy乗]とb[のx乗]の差が1なので、片方は偶数で他方は奇数です。素数の内、偶数は2のみです。因数分解した素数の掛算の中に、2が1つでもあると全体は偶数となります。従って、片方のみ2を必ず含みます。他方は2以外の素数(奇数)の掛算となります。  ではまず、a及びbが素数の場合を検証します。 b=2の場合(1)式は a[のy乗]-1=(a[のy/2乗]+1)×(a[のy/2乗]-1)=2[のx乗]となります。 2つの数字を掛けて2の累乗になるのは、双方が2の累乗の時だけです。従って、 (a[のy/2乗]+1)=2[のm乗]、(a[のy/2乗]-1)=2[のn乗]、m+n=xです。 ある数に1を足しても、それから1を引いても2の累乗になります。2の累乗の中で差が2なのは、2と4のみです。従って、 (a[のy/2乗]+1)=2[のm乗]=4、m=2、a[のy/2乗]=4-1=3=3[の1乗]、a=3、y/2=1、y=2です。 (a[のy/2乗]-1)=2[のn乗]=2、n=1、a[のy/2乗]=2+1=3=3[の1乗]、a=3、y/2=1、y=2です。 m=2、n=1なのでx=3です。この場合、解は3[の2乗] -1=2[の3乗]しかありません。 次にa=2の場合(1)式は (2)2[のy乗]-1=(2[のy/2乗]+1)×(2[のy/2乗]-1)=b[のx乗] となります。 2つの数字を掛けてbの累乗になるのは、双方がbの累乗の時だけです。ある数に1を足しても、それから1を引いてもbの累乗となります。2以外の素数の累乗の中で差が2なのは、3[の1乗]=3と3[の0乗]=1のみです。従ってb=3です。 (2[のy/2乗]+1)=3、2[のy/2乗]=3-1=2=2[の1乗]、y/2=1、y=2です。 (2[のy/2乗]-1)=1、2[のy/2乗]=1+1=2=2[の1乗]、y/2=1、y=2です。(2)は、2[の2乗]-1=4-1=3[の1乗]となり、x=1となります。(2)は、2[の2乗]-1=3[の1乗]ですが、x<>1であるので、この場合解はありません。 次に、a及びbが複数の素数の掛算からなる場合です。a[のy乗]とb[のx乗]は、偶数と奇数なので、a又はbどちらか一方にのみ2を含みます。 まず、bが2を含む場合(1)式は a[のy乗]-1=(a[のy/2乗]+1)×(a[のy/2乗]-1)=(2×c)[のx乗] となります。 2つの数字を掛けて(2×c)の累乗になるのは、双方が(2×c)の累乗の時だけです。(2×c)の累乗の中で差が2なのは、c=1の時で、4と2のみです。従って、 (a[のy/2乗]+1)=4、a[のy/2乗]=4-1=3=3[の1乗]、a=3、y/2=2、y=2です。 (a[のy/2乗]-1)=2、a[のy/2乗]=2+1=3=3[の1乗]、a=3、y/2=2、y=2です。 この場合も、解は3[の2乗] -1=9-1=8=2[の3乗]となります。  次に、aが2を含む場合(1)式は (3)(2×d)[のy乗]-1=((2×d)[のy/2乗]+1)×((2×d)[のy/2乗]-1)=b[のx乗] 2つの数字を掛けてbの累乗になるのは、双方がbの累乗の時だけです。ある数に1を足しても、それから1を引いてもbの累乗となります。2を含まない素数の掛算の累乗の中で差が2なのは、3[の1乗]=3と3[の0乗]=1のみです。従ってb=3です。 ((2×d)[のy/2乗]+1)=3、(2×d)[のy/2乗]=3-1=2=2[の1乗]、d=1、y/2=1、y=2です。 ((2×d)[のy/2乗]-1)=1、(2×d)[のy/2乗]=1+1=2=2[の1乗]、y/2=1、y=2です。(3)は、2[の2乗]-1=4-1=3[の1乗]となり、x=1となります。(2)は、2[の2乗]-1=3[の1乗]ですが、x<>1であるので、この場合解はありません。 従って、a[のy乗]-b[のx乗]=1の解は、a=3、b=2、y=2、x=3、即ち3[の2乗]-2[の3乗]=1に限る。

  • エルデスシュトラウスの予想を証明しました。完成版

    前回掲載した証明方法は、説明が不十分のようなので補足する意味で、完成版を掲載します。 Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、1/N+(1/N+1)+(1/N(N+1))=2/N(2/N公式その1と呼ぶ)は常に成立します。 Nが偶数の時、2/N公式その1にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。(1/11)+(1/(11+1))+(1/(11×(11+1)))=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となり、求める式が出来ます。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/(9+1))+(1/(9×(9+1))=(1/3)+(1/10)+(1/(9×10)=(1/3)+(1/10)+(1/90)=40/90=4/9となり、求める式が出来ます。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います((3)の分母のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき、3n+2=11なので、3n=9、n=3を使います。(1/11)+(1/(3+1))+(1/(11×(3+1)))=(1/11)+(1/4)+(1/44)=16/44=4/11となり、求める式が出来ます。 次ぎに、N=3n+2でNが奇数の時です。Nは4の倍数-1、4の倍数-3の2通りがあります(N=4の倍数、N=4の倍数-2の時、何れもNは偶数となります)。 Nが4の倍数-1の場合、(N+1=4nの時)(1)式中のNの代わりに倍数nを使います。(2)式+(3)式は、(1/2Nn)+(1/2Nn)と変形します。2/N公式を1/n+(1/2Nn)+(1/2Nn)=2/N(2/N公式その2と呼ぶ)とします。例えばN=19の時、19+1=20=5×4なので、2/N公式その2に倍数5を使います。(1/5)+(1/(2×19×5))+(1/(2×19×5))=(1/5)+(1/190)+(1/190)=40/190=4/19となり、求める式が出来ます。 Nが4の倍数-3(4n-3とする)の場合、2N+N+1=2(4n-3)+(4n-3)+1=12n-8=4(3n-2)となり、2N+N+1は必ず4の倍数となります。2N+N+1を4で割った商である(3n-2)をPとします。即ち4P=2N+N+1です。その時、(1/P)+(1/2P)+(1/2NP)=2/N(2/N公式その3と呼ぶ)は常に成立します。 Pの代わりにP/2=pを使います。例えば、N=37の時、(37×2+37+1)/4=112/4=28=Pです。ですから、p=14を2/N公式その3に使います。(1/14)+(1/(2×14))+(1/(2×37×14))=(1/14)+(1/28)+(1/1,036)=(1/14)+(1/28)+(1/1,036)=(74+37+1)/1,036=112/1,036=4/37となり、求める式が出来ます。これで、2/N公式その1・2・3により、全てのNについて求める式が出来ました。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。 この方法で、1/X+1/Y+1/Zと表せないNがあったら教えてください。

  • エルデスシュトラウスの予想を証明しました。完成版

    前回掲載した証明方法は、説明が不十分のようなので補足する意味で、完成版を掲載します。 Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在するとエルデス・シュトラウスは予想しました。 (1)(1/N)×(N/N)と(2)(1/N)×(N/N+1)と(3)(1/N)×(1/N+1)との3つの塊を考えます。(1)は1/Nです。(2)は(1/N+1)です。(3)は(1/N(N+1))です。(1)(2)(3)とも全て、分子は1で、分母は自然数です。また、(2)+(3)=(1/N)×(N/N+1)+(1/N)×(1/N+1)=(1/N)×(N+1)/(N+1)=1/Nとなります。故に(1)+(2)+(3)=2/Nとなります。従って、1/N+(1/N+1)+(1/N(N+1))=2/N(2/N公式その1と呼ぶ)は常に成立します。 Nが偶数の時、2/N公式その1にNの半分の値を当てはめると、求める式は出来上がります。例えばN=22の場合、11を使います。(1/11)+(1/(11+1))+(1/(11×(11+1)))=(1/11)+(1/12)+(1/(11×12))=(1/11)+(1/12)+(1/122)=24/122=4/22となり、求める式が出来ます。 Nが奇数の時、Nは3の倍数、3の倍数+1、3の倍数+2の3通りがあります。N=3nの時、(1)の式にはnを使います。分母を1/3にする為、(1)の値は3倍になります。(2)+(3)の式にはNを使いますので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=9の場合、(1/3)+(1/(9+1))+(1/(9×(9+1))=(1/3)+(1/10)+(1/(9×10)=(1/3)+(1/10)+(1/90)=40/90=4/9となり、求める式が出来ます。 N=3n+2の時、(2)+(3)の式のN+1の値が3n+2+1=3(n+1)と3の倍数になるので、(2)+(3)の式にN+1の替りに、n+1を使います((3)の分母のNはそのままです)。分母を1/3にする為、(2)+(3)の値は3倍になります。(1)の式にはNを使うので、値は元のままです。(1)+(2)+(3)=4/Nとなります。例えばN=11のとき、3n+2=11なので、3n=9、n=3を使います。(1/11)+(1/(3+1))+(1/(11×(3+1)))=(1/11)+(1/4)+(1/44)=16/44=4/11となり、求める式が出来ます。 次ぎに、N=3n+2でNが奇数の時です。Nは4の倍数-1、4の倍数-3の2通りがあります(N=4の倍数、N=4の倍数-2の時、何れもNは偶数となります)。 Nが4の倍数-1の場合、(N+1=4nの時)(1)式中のNの代わりに倍数nを使います。(2)式+(3)式は、(1/2Nn)+(1/2Nn)と変形します。2/N公式を1/n+(1/2Nn)+(1/2Nn)=2/N(2/N公式その2と呼ぶ)とします。例えばN=19の時、19+1=20=5×4なので、2/N公式その2に倍数5を使います。(1/5)+(1/(2×19×5))+(1/(2×19×5))=(1/5)+(1/190)+(1/190)=40/190=4/19となり、求める式が出来ます。 Nが4の倍数-3(4n-3とする)の場合、2N+N+1=2(4n-3)+(4n-3)+1=12n-8=4(3n-2)となり、2N+N+1は必ず4の倍数となります。2N+N+1を4で割った商である(3n-2)をPとします。即ち4P=2N+N+1です。その時、(1/P)+(1/2P)+(1/2NP)=2/N(2/N公式その3と呼ぶ)は常に成立します。 Pの代わりにP/2=pを使います。例えば、N=37の時、(37×2+37+1)/4=112/4=28=Pです。ですから、p=14を2/N公式その3に使います。(1/14)+(1/(2×14))+(1/(2×37×14))=(1/14)+(1/28)+(1/1,036)=(1/14)+(1/28)+(1/1,036)=(74+37+1)/1,036=112/1,036=4/37となり、求める式が出来ます。これで、2/N公式その1・2・3により、全てのNについて求める式が出来ました。 従って、Nを2以上の自然数とすると、4/N=1/X+1/Y+1/Zを満たす自然数X・Y・Zが必ず存在すると言えます。 この方法で、1/X+1/Y+1/Zと表せないNがあったら教えてください。

  • ポアンカレ予想

    ポアンカレ予想「単連結な3次元閉多様体は3次元球面S^3に同相である」で、ペレルマンが同相であると証明したのか、それとも同相でないと証明したのかどちらですか。教えてください。

  • ポアンカレ予想

    ポアンカレ予想「単連結な3次元閉多様体は3次元球面S^3に同相である」で、ペレルマンが同相であると証明したのか、それとも同相でないと証明したのかどちらですか。教えてください。