検索結果

微分

全10000件中81~100件表示
  • 全てのカテゴリ
  • 全ての質問
  • 微分

    関数y=x2乗+1のグラフに点C(2,1)から引いた接線の方程式を求めよ。 この問題まず接線(t,t2乗+1)と接点をおき関数を微分して、接線の傾きを求めてその直線が(2,1)を通るので代入して計算しましたが答えが出ません。 計算ミスでしょうか?やり方は合っていますか?

  • 微分

    x^3-4x>0を解け。 y=x^3-4xと置きこれを微分。 y'=3x^2-4となる。 y'=0としx=-√3分の2,√3分の2となりましたが答えはx=2,-2です。 何が違っているのかわかりません。 やり方が違っていますか?

  • 微分

    X3乗+4X2乗+6X-1=0の実数解の個数を求めよ。 Y=X3乗+4X2乗+6X-1と置き微分してグラフを書いてもとめましたが答えが合いません。やり方が違っているのでしょうか?

  • 微分

    こんにちは。 ある問題の途中で df/dt=f-f^3 を変形して df^(-2)/dt+2f^(-2)=2 となっているのですが、どのようにしてこうなるのかがわかりません。 どなたかお願いします。

  • 微分

    (x)=a(sin(x))^3+bcos(x)+2 (0≦x≦π) はx=π/6で極小値2+5√3をとる。 定数a,bの値を求めよ。またf(x)の最大値、最小値とそれを与えるxの値を求めよ。 代入して計算し40√3=a+4√(3)b 与式を両辺xで微分して整理し4√(3)-1=8√(3)a-4b 上を解いてa=(39√(3)-12)/25,b=(4√(3)+961)/100 まで出すことができましたが、そこからの解き方がわかりません。 上のa,bの値も間違いがあれば教えていただけないでしょうか。 お願いします。

    • wyatt
    • 回答数3
  • 微分

    sin^-1×{x/(1+x^2)}の微分 次のn階導関数を求めよ。 (1)1/(x+2) (2)1/(x+2)(x-1) (3)sin(2x+1) (4)x^3×sinx わかるやつだけでいいので教えてください

  • 微分

    記述式の微分の問題では、確かめを示さない時がありますよね。例えばどんな時に必要なんですか?いつそれをすればいいかわからなくて・・・

    • c2hao3s
    • 回答数1
  • 微分 

    (1) e^2logx  これを微分すると 2e^2logx/x になったのですがあっていますか?

  • 微分

    微分の問題です 次の関数の増減を調べ、極地を求めよ。 また、そのグラフを書け。 y=-x^4-4x^3+16x+16 私はこれを微分して y=-4x^3-12x^2+16 にするまでしか分かりません 教えて下さい!!

  • 微分

    問題を解いたのですが、自分の答えがあっているか不安なので、間違っているか教えてくれませんか? 問1 次の導関数を求めよ。 (1) y=(sinx + x^2)^(4/3) (2) y={(e^2x + 1)^(1/2)}/e^(-x) 問2 次の導関数を求めよ。    (3) y=arccos2x/sinx 問3 次の極値を求めよ。    (4) y=x+2sinx (0≦x≦2π) (5) y=x^(1/2)-logx 自分の解答   (1) y'=(4/3)(cosx+x^2)(sinx+x^2)^(1/3) (2) y'={(e^2x +1)^(1/2)+(e^2x +1}/(e^-x)(e^2x +1)^(1/2) (3) y'=-[{2sinx/(1-4x^2)}+cosx・arccos2x]/sin^2 x (4) 自信がないので全部書きます。     y'=1+2cosx=0 よってcosx=-1/2 x=2π/3 増減表を書くと     x 2π …4π/3… 2π/3 … 0      y +  - + z /極大 \ 極小 /  (/は右上の矢印のことです)     よって極大値は y=4π/3-√3 極小値は y=2π/3+√3 ここで、疑問なのですが、極大値より極小値のほうが値が大きいと思うのですが、これでいいのでしょうか?    (5) y'=0より、x=4となる     増減表を書くと     x 0 …  4  …       y - + z \ 極小 /  (/は右上, \は右下の矢印のことです)     よって極小値は y=2-2log2 このような解答になりましたがどうでしょうか?        

    • tkoh
    • 回答数1
  • 微分

    問題を解いたのですが、自分の答えがあっているか不安なので、間違っているか教えてくれませんか? 問1 次の導関数を求めよ。 (1) y=(sinx + x^2)^(4/3) (2) y={(e^2x + 1)^(1/2)}/e^(-x) 問2 次の導関数を求めよ。    (3) y=arccos2x/sinx 問3 次の極値を求めよ。    (4) y=x+2sinx (0≦x≦2π) (5) y=x^(1/2)-logx 自分の解答   (1) y'=(4/3)(cosx+x^2)(sinx+x^2)^(1/3) (2) y'={(e^2x +1)^(1/2)+(e^2x +1}/(e^-x)(e^2x +1)^(1/2) (3) y'=-[{2sinx/(1-4x^2)}+cosx・arccos2x]/sin^2 x (4) 自信がないので全部書きます。     y'=1+2cosx=0 よってcosx=-1/2 x=2π/3 増減表を書くと     x 2π …4π/3… 2π/3 … 0      y     +      -       +     z /極大 \ 極小 /  (/は右上の矢印のことです)     よって極大値は y=4π/3-√3 極小値は y=2π/3+√3 ここで、疑問なのですが、極大値より極小値のほうが値が大きいと思うのですが、これでいいのでしょうか?    (5) y'=0より、x=4となる     増減表を書くと     x 0 …  4  …       y    -    +     z \ 極小 /  (/は右上, \は右下の矢印のことです)     よって極小値は y=2-2log2 このような解答になりましたがどうでしょうか?        

    • tkoh
    • 回答数1
  • 微分

    log{tan(x/2)} これの微分のやりかた教えてください。お願いします。 答えは 1/sinx です。

  • 微分

    微分について質問です。 f(x)は x≠0のときe^(-1/x^2) x=0のとき0 [問]f’(0)とf’’(0)を求めよ という問題がわかりません!どなたか解説お願いします!

  • 微分

    次の問題がどのようにやったらいいのかよくわかりません。 問 y=x^n(nは自然数)を定義に従って微分せよ。 この問題ですが、微分の定義は教科書見てわかるのですが、これをどのようにしたらいいのか見当もつきません。 教えてください。お願いします。

    • tkoh
    • 回答数4
  • 微分

    曲線C:y=x^2-2x+2上の点PQにおける接線をl1、l2とし、l1、l2の交点をRとする。点P、Qのx座標をα、β(ただし、α<β)として、次の問いに答えよ。 l1はy=(アα-イ)x-α^2+ウ 微分だとは分かるのですがどう解いたらよいかわかりません。教えて下さい。

  • 微分

    y=√xを微分すると dx/dy=2y dy/dy=1/dx/dy=1/2y ここから 1/2√xとなるのはなぜですか。

  • 微分

    次の関数を微分せよ。 1)y=x^logx(x>0) 2)y=(logx)^x(x>1) 対数微分法で解くのだと思いますが、解き方が思いつきません!どなたか分かる方教えてください!

    • 1111wan
    • 回答数3
  • 微分

    微分の問題を教えてください。 f(x)=x^3+(a-1)x^2-a+2<aは実数>とするとき、次の問いに答えよ。 (1)y=f(x)のグラフはaの値によらず2定点を通ることを示せ。 (2)y=f(x)の極大値を与えるxの座標mを求めよ。 (3)aが実数全体を動くとき、(m,f(m))の軌跡をxy平面上に図示せよ。 (1)は(1,2)(-1,0)と答えが出たんですけど、(2)は微分して増減表を書こうとしたら大小関係が分からず答えが2つになってしまいます。(3)は図示は無理なので式あたりまで教えてください。

    • ko1smgo
    • 回答数4
  • 微分

    x'(t)=t/cos(x(t))でx(0)=0となるもののx(t)を求めy。 この問題の解法がわかりません。 よければ、教えてください。

    • noname#105273
    • 回答数2
  • 微分

    こんにちは。工学部の大学一年生です。 y={sin(x^2-1)}^(-1) (アークサイン)を2回微分しなさい。 という問題なんですが、 まず x^2-1=siny として微分しようと思ったのですが、この後 2x=y'cosy=y'{1-(siny)^2}^(1/2) として解こうとしました。 でもこの後どうすればいいのでしょうか? あるいは、このほかの方法があるのでしょうか? 教えてください。お願いします。

    • noname#60789
    • 回答数1