検索結果
微分
- 全てのカテゴリ
- 全ての質問
- 微分
こんにちは。 ある問題の途中で df/dt=f-f^3 を変形して df^(-2)/dt+2f^(-2)=2 となっているのですが、どのようにしてこうなるのかがわかりません。 どなたかお願いします。
- ベストアンサー
- 数学・算数
- dakadaka22
- 回答数2
- 微分
sin^-1×{x/(1+x^2)}の微分 次のn階導関数を求めよ。 (1)1/(x+2) (2)1/(x+2)(x-1) (3)sin(2x+1) (4)x^3×sinx わかるやつだけでいいので教えてください
- 締切済み
- 数学・算数
- yuusuke600
- 回答数1
- 微分
問題を解いたのですが、自分の答えがあっているか不安なので、間違っているか教えてくれませんか? 問1 次の導関数を求めよ。 (1) y=(sinx + x^2)^(4/3) (2) y={(e^2x + 1)^(1/2)}/e^(-x) 問2 次の導関数を求めよ。 (3) y=arccos2x/sinx 問3 次の極値を求めよ。 (4) y=x+2sinx (0≦x≦2π) (5) y=x^(1/2)-logx 自分の解答 (1) y'=(4/3)(cosx+x^2)(sinx+x^2)^(1/3) (2) y'={(e^2x +1)^(1/2)+(e^2x +1}/(e^-x)(e^2x +1)^(1/2) (3) y'=-[{2sinx/(1-4x^2)}+cosx・arccos2x]/sin^2 x (4) 自信がないので全部書きます。 y'=1+2cosx=0 よってcosx=-1/2 x=2π/3 増減表を書くと x 2π …4π/3… 2π/3 … 0 y + - + z /極大 \ 極小 / (/は右上の矢印のことです) よって極大値は y=4π/3-√3 極小値は y=2π/3+√3 ここで、疑問なのですが、極大値より極小値のほうが値が大きいと思うのですが、これでいいのでしょうか? (5) y'=0より、x=4となる 増減表を書くと x 0 … 4 … y - + z \ 極小 / (/は右上, \は右下の矢印のことです) よって極小値は y=2-2log2 このような解答になりましたがどうでしょうか?
- 微分
問題を解いたのですが、自分の答えがあっているか不安なので、間違っているか教えてくれませんか? 問1 次の導関数を求めよ。 (1) y=(sinx + x^2)^(4/3) (2) y={(e^2x + 1)^(1/2)}/e^(-x) 問2 次の導関数を求めよ。 (3) y=arccos2x/sinx 問3 次の極値を求めよ。 (4) y=x+2sinx (0≦x≦2π) (5) y=x^(1/2)-logx 自分の解答 (1) y'=(4/3)(cosx+x^2)(sinx+x^2)^(1/3) (2) y'={(e^2x +1)^(1/2)+(e^2x +1}/(e^-x)(e^2x +1)^(1/2) (3) y'=-[{2sinx/(1-4x^2)}+cosx・arccos2x]/sin^2 x (4) 自信がないので全部書きます。 y'=1+2cosx=0 よってcosx=-1/2 x=2π/3 増減表を書くと x 2π …4π/3… 2π/3 … 0 y + - + z /極大 \ 極小 / (/は右上の矢印のことです) よって極大値は y=4π/3-√3 極小値は y=2π/3+√3 ここで、疑問なのですが、極大値より極小値のほうが値が大きいと思うのですが、これでいいのでしょうか? (5) y'=0より、x=4となる 増減表を書くと x 0 … 4 … y - + z \ 極小 / (/は右上, \は右下の矢印のことです) よって極小値は y=2-2log2 このような解答になりましたがどうでしょうか?
- 微分
微分について質問です。 f(x)は x≠0のときe^(-1/x^2) x=0のとき0 [問]f’(0)とf’’(0)を求めよ という問題がわかりません!どなたか解説お願いします!
- ベストアンサー
- 数学・算数
- stars_seve
- 回答数4
