• 締切済み

この命題は証明できないについて

ゲーデルの不完全性定理などの話の中で上がる、「この命題は証明できない」の矛盾について、どこが矛盾になるのかよくわかりません。 定義的な読み違いだと思うのですが、自己言及のパラドックス(床屋の〜とか嘘つきの〜)については納得というか理解ができます。 例えば嘘つきのパラドックスでは「私は嘘つきである」という発言が正なら嘘をついているので正直者ということに、偽なら正直者のはずが嘘つきと嘘をついている、と矛盾が生じます。それはわかります。 この命題は証明できない、の場合も同じように考えるのだということはわかるのですが、「この命題」をAと表記したときに、「Aが証明できない」が正であれば「Aは証明できない」ということを「証明できる」ということになります。 「Aが証明できない」を偽だとすると「Aは証明できる」ことになります。 ここまではよいのですが、これは数学的な話であり、正の「Aが証明できないことを(BやCなど別の定理を使って)証明する」ことは可能な気がしますし、偽の「Aは間違いである」と結論付けることにも問題がない気がします。 嘘つきのパラドックスとの差に、他の考え方(上記例で言うとBやCといった命題以外の定理)の持ち込みがあるので、これが読み違いというか悩みの原因だと思うのですが…。 持ち込みがなく、命題のみで行う場合(=自己言及のパラドックスに陥る場合)がゲーデルの不完全性定理に当てはまる場合であり、持ち込みがあり矛盾なく証明または反証ができる場合が解決可能な定義(または予想)という認識であってますか…?? 数学学んでるわけではなく、単純に目に触れて興味持っただけのド素人です。学校教育から離れて久しいですので、ものすごくわかりやすい説明や解説を求めております。。。

  • vitals
  • お礼率81% (109/133)

みんなの回答

  • sknbsknb2
  • ベストアンサー率38% (1125/2898)
回答No.2

ANo.1です。 もう少しいうと、 命題:証明によって真偽が確定できるもの なので、証明ができないものは、命題ではない。 つまり「この命題は証明できない」の中では、 「命題ではないものを命題と呼んでいる」 という矛盾があります。

  • sknbsknb2
  • ベストアンサー率38% (1125/2898)
回答No.1

命題っていうのは、証明することによって真か偽かのどちらかになるものであって、どちらにもならないと証明するのは不可能です。 「この命題は証明できない」と言った場合、証明を行っていないと言っているにもかかわらず、真偽が判定できないと断定しています。 真偽が判定できないと断定するためには、その証明を行わなければならないのに、それをしてはいないというのが矛盾点です。 (証明もしてないのに、どうして断定できるんだ!ということです)

関連するQ&A

  • 無理数に関するこの命題は証明されているでしょうか?

    無理数に関して,以下の2つの命題は証明されているでしょうか? ご存じの方,教えて下さい.記述を正確にするために,定義から書きます. 定義(1): 十進法で表示した無限数列において,十進法の数字 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 のすべてが現れる無限数列を「全域無限数列」と仮に呼ぶことにします.■ 定義(2): 全域無限数列でない無限数列を「非全域無限数列」と仮に呼ぶことにします.■ 無理数を無限数列と考えることにして,次の命題は真でしょうか? 命題(A): 無理数は,すべて全域無限数列である.■ 命題(B): 非全域無限数列となる無理数が存在する.■ 命題(A)は正しそうな気がします.しかし,命題(B)は偽(正しくない)のような気がするのですが,命題(A),命題(B)に相当する定理はあるのでしょうか? お分かりの方,教えて下さい.

  • 命題について

    いま、「数学は言葉」という本を読んでいます。 p38からp39にかけて、 「証明できないような図形の命題をあげよ」という例題があります。 「xは三角形である。」 「xに代入する値によって、この命題の真偽は変化するのです。このような命題は証明することができません。」 とあるのですが、真偽が変化するのにどうして命題といえるのか。真偽が判定できるから命題というのではないのでしょうか。もちろん、証明できないから命題ではないと言えないのは分かりますが。例えば、三平方の定理とか。 さらにp39のところで、 「三角形の2辺の長さの和は残る1辺の長さよりも短い」も図形の命題ですが、偽なる命題です。偽なる命題が証明されてしまっては困ります。 以上のことから、「自由な変数が含まれているため、真偽が定まらない命題」や「偽なる命題」は(枠組み自体が歪んでいない限り)証明できないことがわかります。 とあります。 「三角形の2辺の長さの和は残る1辺の長さよりも短い」は偽なのは分かりますが、証明できるものなのかどうかよく考えてみると少なくとも私には証明できません。ということはこれは「証明できない命題」なのでしょうか。もし証明できないとすれば例題の証明できない図形の命題ということになるのですが。さらに「偽なる命題が証明されてしまっては困ります。」とはどういう意味で書かれているのでしょうか。ピンとこないのです。 けっこう難しいと思うのですがわかりやすく説明できる方はいませんでしょうか。 宜しくお願いします。

  • ユークリッド幾何学にまつわる不完全性定理的理解について

    ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。    以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 

  • 人類の永遠の謎です。ゲーデル命題

    人類の永遠の謎です。ゲーデル命題 考え事をしていてとうとう聞いてみたいと思いました。 私は高校生で一応クリスチャンなのですが、大分前にゲーデル命題、不完全性定理というものを目にしました。 概要を掻い摘んで見ていたのですが、ふと疑問に思いました。 例えば、神は自然数論を知っている。 だが、自然数論には矛盾が生じている。 こんなものを作った神は全知全能ではない。 よって、人類が思うような神など存在しないと。 なるほど、と思った反面一つ疑問がでてきました。 そもそも、自然数論は人間が作ったもので、神がこれをご存知でいらしても、これの創造主が神であるとは限らない。 矛盾があるならば、その考えの形態は誤りであり、神の存在ないし不在には一切の関係を示すものではないと。 自然数論に矛盾があるために、これを作ったのが神だと決めつけ、全知全能を覆す。 どうなんでしょうか。。。 そもそも、この不完全性定理はもっと複雑で入り組んでいるのでしょうが。。。 誰か私の考えの反例をください。

  • 偽の命題AとAと矛盾する命題BのA⇨B

    初歩的な質問ですみません! つねに偽な命題Aと任意な命題BでA⇨BというときのBは、Aと矛盾する命題も含みますか? たとえば、「2+2=5」⇨「2+2=4」という命題も、真ですか?

  • 公理的集合論で、ある命題を証明?

    選択公理を導入すると、下記の命題(1)が証明できるそうです。(Wikipediaの選択公理の記述) 命題(1):任意の二つの集合 A,B について、A から B への単射があるか、または B から A への単射がある。 素人丸出しの例題で恐縮ですが、上記の命題(1)で、任意の集合として以下を選びます。 集合A:原子の名前を要素とする集合とする。 集合B:地球上の国名を要素とする集合とする。 この場合、AからBへの単射もないし、BからAへの単射もなく、命題(1)が偽であるように思えます。 選択公理を用いると証明できるとされる命題(1)は、何を意味しているのでしょうか。 数学の素人にもわかる簡単な例で命題(1)の意味をご説明いただけると助かります。

  • 命題論理の定理の証明

    論理学の有名な定理? A→C,B→C,ならばAvB→C というのがありますが http://en.wikipedia.org/wiki/Disjunction_elimination AvB=(¬A)→B それは 命題論理の公理系 1) φ → (χ → φ) 2) (φ → (χ → ψ)) → ((φ → χ) → (φ → ψ)) 3) (¬ψ → ¬φ)→(φ → ψ) あとモーダスポネンスを使って証明出来るんでしょうか? よろしくお願いします

  • 数学の無矛盾性とはどんなものですか?

    そりゃ、公理系が矛盾を一つも証明しないことに決まっていますけど、いったいどんな感じになったら「数学の無矛盾性を証明した」になるんですか、教えてください! やっぱりゲーデル命題を使って論証するんでしょうか?

  • Pが偽である時、¬Pが真であることの証明

    Pが偽である時、¬Pが真であることの証明が分かりません 矛盾律 :「P ∧ (¬P) は偽」の事である。 排中律 : 命題は成立するか成立しないかのどちらか以外は起こらない (http://www.ozawa.phys.waseda.ac.jp/pdf/ronritoshugo.pdf) Pが偽,¬Pが偽でも、P ∧ (¬P) は偽なので、上の定義の矛盾律には違反していない Pが成り立っていないで偽、¬Pが成り立っていないで偽で排中律も違反していない どうやったら証明が可能でしょうか?