• 締切済み

青チャート例題119について

青チャート例題119について 例題119より前の問題では、二次関数のグラフや二次方程式の解の種類について指定があるとき、その「必要十分条件」として二次方程式の判別式Dはある範囲をとるという記述(たとえばグラフがx軸と接する必要十分条件はD=0、二次方程式が重解をもつ必要十分条件はD=0、など)があります。 一方この問題の場合では、二次方程式が実数解を持つための「条件」(必要十分条件でなく)として、D≧0 という記述がされています。 他の二次関数の似たような問題と異なり、この問題では判別式の範囲であるD≧0が二次方程式が実数解を持つための「必要十分条件」でなく「条件」と記述されているのはなぜでしょうか。 また、この場合の「条件」とは十分・必要・必要十分条件のいずれかに分類されるものでしょうか。

みんなの回答

  • asuncion
  • ベストアンサー率33% (2126/6286)
回答No.1

>「必要十分条件」でなく「条件」と記述されているのはなぜでしょうか。 ここの理由はわかりませんが、一般に、単に「条件」と かいてあった場合は必要十分条件を指すと思います。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 青チャート 2B 例題38について

    (2)の解説に疑問点があります。 2x^2-(k+2)x+k-1=0 (kは定数) の解の種類を判別せよ、という問題です。 kが定数のとき、kは実数も虚数もその値としてとりうる、と理解しています。 チャート式の解説では D=(k-2)^2+8 ゆえに すべての実数kについてD>0 よって 異なる二つの実数解をもつ と解説されています。 kは虚数もとりうるのであれば、kが実数の場合についてだけでなく、虚数である場合についても考える必要があると思いますが、なぜkが虚数である場合について記されていないのでしょうか。

  • 青チャートの

    青チャートの (1)『x^2-6x+k=0について、1つの解が他の解の2倍となるkを求めよ』という問題で、判別式を使っていないのに (2)『x^2-(a-10)x+a+14=0が異なる2つの正の解を持つようなaの範囲を求めよ』 という問題では判別式>0を確認したのち解と係数を用いているのは、 (2)は解が実数である必要があるのに対して (1)は虚数解でも比は考えることができるから判別式不要 であるからでしょうか? もしそうなら、(1)の問題を『2つの解の差が2』などとすると、今度は2つの解が実数でないとおかしい(虚数に大小はないから)のでこのときは判別式を使わないといけないんですよね? 長くなりましたが、どうぞ、回答を宜しくお願い致します!

  • 実数係数4次方程式の判別式

    http://www004.upp.so-net.ne.jp/s_honma/polynomial/discriminant.htm を参照して、判別式について考えています。 そこでの、普通の意味での判別式は、 D = a_0^2(n-1)Π( αi - αj )^2 で、 D=0⇔多項式 F(X) (または、方程式 F(X)=0 )は、重根をもつ です。 2次においては、 D>0ならば、2つの相異なる実数解をもつ D<0ならば、2つの相異なる虚数解をもつ D=0ならば、実数の2重解をもつ 3次においては、 D>0ならば、3つの相異なる実数解をもつ D<0ならば、1つの実数解と2つの虚数解をもつ D=0とする。p=q=0ならば、3重解(解は0のみ)をもつ        pq≠0 ならば、 3つの実数解(2重解とその他の解)をもつ のように、2次や3次に限っては、判別式Dの正負または0の値によって明確に分類されます。 では、4次方程式の場合にはどうなるでしょうか? たとえば、相異なる実数解を4個もつ条件は何でしょうか? (極大値が正、極小値が負という条件を考えましたが、微分した3次方程式を解くことになるし、結果もきれいにならないだろうし、また、より一般には、5次方程式は解けないし、なにか別のいい方法を知りたいと思っています。)

  • 2次方程式が実数解を持つ範囲

    こんばんは、宜しくお願いします。 2次方程式 x^2-(8-a)x+12-ab=0が定数aの値に関わらず実数解を持つときの定数bの範囲を求めよ。 まず、実数解とあるので重解でもよいから判別式D≧0ですよね。 それで、D=a^2+4(b-4)a+16ですね。 ここで、ここからの進め方が分らなかったので答えを見ると、 ”aの2次方程式=a^2+4(b-4)a+16の判別式を新たにDaとおくとD≧0となる条件はDa/4≦0でなければいけない。”とあるのですが、わからないです。 なぜDa/4≧0ではなくDa/4≦0なのでしょうか? よろしくおねがいします。

  • 解の存在する範囲

    ///問題/// xの2次方程式 x^2+2ax+4a^2+2a=0 (aは実数の定数)がある。 この方程式の実数解のとり得る値の範囲を求めよ。 ///解答/// この方程式の実数解をαとすると、代入して α^2+2aα+4a^2+2a=0 aについて整理すると 4a^2+2(α+1)a+α^2=0 求めるものは、この方程式を満たす実数解aが存在するような実数αの条件である。 よって、aの方程式と考えて判別式をDとすると D≧0 D/4=(α+1)^2-4α=-3α^2+2α+1であるから -3α^2+2α+1≧0より 3α^2-2α-1≦0 (3α+1)(α-1)≦0をといて -1/3≦α≦1 したがって、実数解の存在する範囲は-1/3≦x≦1 なんでaについて整理するんでしょうか? xについてじゃだめなんですか? あと問題文の >この方程式の実数解のとり得る~ のあたりもよくわからなくなってきました。 実数解ってグラフにしたときにx軸と放物線がくっつくところと考えてたんですけど違うんでしょうか…?

  • 判別式の証明

    高校で習う判別式について簡単な質問です。 二次方程式ax^2+bx+c=0の 判別式D=b^2-4acにおいて D>0の→方程式は2実解をもつ D=0の→重解をもつ D<0の→虚数解を2つもつ の証明は二次関数のグラフで証明できますが、逆に方程式は2実解をもつならばD>0が成り立つというように逆側からについてはどうやって証明すればいいのでしょうか?

  • 二次関数の「2つの解」の定義

    こんにちは。 数IIの二次関数について質問です。 「異なる2つの実数解」の時は、判別式D>0ですが、 「2つの実数解」と書いているときはD>=0なのでしょうか? 重解も2つの解としてみなされるのでしょうか?

  • 二次関数の問題なので

    二次関数の問題なので 例えばですが y = x^2 + 2kx + k^2 - 2 という二次関数の方程式があるとします。 その方程式f(x)=0が実数解α、β(α≦β)をもつとき、次の問題に答えよ。 という設定があり、(1)の問題 α、βがα≦1≦βをみたすようにkの値の範囲を定めよ。 だったとします。 この問題を解くにあたって、既に問題文に「実数解α、β(α≦β)をもつ」とある場合 もう判別式をつくる必要はないのですか? 普通なら、「判別式が正」「この問題の場合、軸の場合分け」「x=1のときyが負」という三つの条件が必要ですよね? しかし、既に問題文に「絶対二つの解をもつ」と書いてある場合は、判別式は必要ありませんか?

  • 二次関数について、2つ分からないことがあります

    タイトルのように、二次関数で分からない、2つの内容について、お伺い致します。 (1)解の存在範囲の問題について、問題集などに「異なる2つの実数解をもつ・・・」と 「2つの実数解をもつ・・・」と2つのパターンがありますが、判別式D=b^2-4acについて前者は 「D>0」、後者は「D≧0」と条件が違います。 前者は容易に理解できるのですが、後者について理解出来ていません。 2つの実数解のとき、括弧付きで、重解も含む、と丁寧な問題集には載っていますが、 この意味が分かりません。 (2)二次不等式の問題で、 「-1<x<3の範囲でx^2-4ax+6>0がつねに成り立つようなaの範囲をもとめよ」(山梨学院大) と言うような問題で、 i)-1<軸<3、ii)範囲がf(x)=x^2-4ax+6の左側または右側にあるときの2つを考えますが、 ii)の時f(-1)≧0またはf(3)≧0と不等号が「>」ではなく「≧」となるのはなぜでしょうか? 以上2つが理解できません、お教え願えますでしょうか。よろしくお願いいたします。

  • 数学IIの問題あっていますか?

    問 mを定数とする。次の2次方程式の解の種類を判別せよ。 (1) x2+4x+m=0 D>0すなわちm<4[異なる2つの実数解] D=0mすなわち=4[重解] D<0すなわちm>4[異なる2つ虚数解] (2) x2-mx+4=0 D>0すなわちm<-4[異なる2つの実数解] D=0mすなわち=-4[重解] D<0すなわちm>-4[異なる2つ虚数解] であっていますか?

SS400の焼きなましについて
このQ&Aのポイント
  • SS400の焼きなましについて、その前後のミクロ組織について調査しました。
  • 焼きなまし(810度、4時間)でSS400を処理し、結晶粒の微細化を観察しました。
  • 結晶化はしていることが分かりますが、結晶粒の微細化はしているのかどうか気になります。ご教授いただけると幸いです。
回答を見る