• 締切済み
  • すぐに回答を!

無限集合

環[‪√‬-2]={a+b‪√‬-2|a,b€Z}を考えるとき、(Z[‪√‬-2])^×が無限集合であることの示し方を教えて頂きたいです。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数43
  • ありがとう数0

みんなの回答

  • 回答No.1

ご自身が質問した https://okwave.jp/qa/q9811261.html と言ってることが矛盾してるではありませんか... きちんと問題を確認しましたか? それと、一応確認ですが、(Z[‪√‬-2])^× の定義は何ですか?環の単元群でいいのですか?何れにせよ、確認し直してください。

共感・感謝の気持ちを伝えよう!

質問者からの補足

https://okwave.jp/qa/q9811261.html この問題を教えて頂けませんか

関連するQ&A

  • 無限集合に関することです。

    無限集合に関することです。 自然数全体を可算無限個の互いに交わらない集合A1,A2,A3・・・(どのAkも可算無限集合)の和として表わされることを示したいのですがどうすれば良いですか? 可算無限集合は自然数全体の集合との間に1対1対応の関係がある集合のことなのに、自然数全体を互いに交わらない集合で示せるのでしょうか?

  • 集合

    教えてください、(1)から(4)を、AからDのいずれか (1)実数成分2次上三角行列の集合 (2)実数成分2次正定値行列の集合 (3)ガウス整数 Z(i) (4)整数係数多項式の集合 A環だが可換環でない B可換環だが整域でない C整域だが体にない D体である という問題なのですが・・・ 簡単な説明とともに、教えてください!! 体や環になる定義は知っています。よろしくお願いします

  • 集合は有限集合と無限集合だけですか?

    有限集合の元の数を考えるとき、 「いかなる有限集合よりも元の数が多い有限集合は存在しない」------(A) ことがわかります。一番大きな基数の有限集合が存在しないと言い換えても良いですね。 ところがここに無限集合の概念を導入すると 「いかなる基数の有限集合よりも大きい集合として無限集合がある」---(A’) ここで「大きい」とは二つの集合の元を対応させて行くと、「大きい」方の元が余ることを言います。 ここでは、“超有限集合”=無限集合という関係が成り立ちます。 さて、公理的集合論の公理により、無限集合Rから常にPower(R)が作れるので、 「いかなる無限集合よりも濃度の数が多い無限集合は存在しない」------(B) が成立しました。 一番大きな濃度の無限集合が存在しないと言い換えても良いですね。 ここで、有限、無限に続く第三の概念として、“超無限集合”=寿限無集合(仮名)という概念を導入します。 すると、(A)に対して(A’)が成り立ったように、(B)に対して(B’)が成り立ちます。 「いかなる濃度の無限集合よりも大きい集合として寿限無集合がある」---(B’) 質問1:このような寿限無集合はZFC公理系で無矛盾に定義できますか? 質問2:集合の種類は有限と無限の二種類でしたが、第三の概念を導入すると、無限集合では成り立たないが寿限無集合の世界だけで成り立つ定理も発見できると思うのですが、このような概念の拡張をした数学者はいましたか? 質問3:有限と無限以外に第三の概念を導入することが無意味であると立証できますか?

  • 集合

    実数aに対して集合A,Bを A={x|(x^2)+(1-a^2)x+(a^3)-2(a^2)+a≦0,xは実数} B={x|(x^2)+(2a-7)x+(a^2)-7a+10<0,xは実数} と定める。共通部分A∩Bが空事象でないためのaの範囲を求める問題で 集合Aについて考えると (x-a+1)(x-(a^2)+a)≦0 x=a-1と(a^2)-aの大小について考えると a-1≦(a^2)-a 集合Bについて考えると (x+a-2)(x+a-5)<0 大小について考えると 2-a<5-a この後どのように考えるのでしょうか?

  • 集合の問題です。

    次の問題が解けないので誰か解いていただけないでしょうか?お願いします。 2つの集合A、Bの要素は次の通りである。 A={-2,-1,5,a^2,2a-2},B={4,b,2a+b} (1)0が集合A,Bの要素のとき、a,bの値をすべて求めよ。 (2)A∩B={0}のとき、a,bの値をすべて求めよ。 (3)集合Aが集合Bを含むとき、a,bの値をすべて求めよ。

  • 可算無限集合と非可算無限集合の違いが分かりません。

    例えば、こういう問題のときそれぞれ可算無限集合と非可算無限集合のうちどっちですか? (1)0≦x≦1を満たす実数x (2)任意の自然数N (3)任意の実数R 回答よろしくお願いします。

  • 無限集合の定義で

    ∃f:全単射 such that f:A→B (但し、BはAの真部分集合) の時、Aを無限集合と言うのがデデキントの無限集合の定義だと思いますが 非可算集合の時にも(例えば実数体)このような全単射写像はするのでしょうか?

  • 数(1)の問題。集合についてですが・・・。

    集合A=(1,4,2a+1、a二乗) B=(9、b、b-3a)について、BはAの部分集合のとき、実数a,bの値を求めよ。 答えはあるんですけど、やり方がわかりません! すごい困ってます。よろしくお願いします!

  • 可算無限集合について。

    aを任意の有理数としたとき、0<a<1を満たすaの集合って可算無限集合ですか?

  • 無限集合に関する証明

    無限集合が存在しないことを証明しました。 以下の証明が合っているかどうか知りたいです。よろしくお願いします。 <定義> 集合の系列、A1,A2,・・・An・・・について、以下の条件が成り立っているとき、そのときに限り、この系列を、無限拡大系列と呼ぶことにします。 1:任意のnについて、An⊆An+1 <証明> 無限拡大系列が存在すると仮定します。任意の無限拡大系列をI1,I2,・・・In・・・とします。I1,I2,・・・In・・・の和集合をI∞とします。あるnについて、I∞=Inと仮定します。まず、無限拡大系列の定義より、In⊆In+1となるIn+1が存在します。よって、I∞⊆In+1。しかし、I∞の定義より、In+1⊂I∞。よって、矛盾が生じました。よって、全てのnに対して、、I∞≠In。そして、I∞の定義より、全てのnに対して、In⊂I∞。よって、全てのnに対して、In⊆I∞。これより、I∞を全体集合としたときの、I1,I2,・・・In・・・の補集合をそれぞれ、I1',I2',・・・In'・・・とすれば、全てのnに対して、In'は空集合ではありません。そして、無限拡大系列の定義から、I1'⊇I2'⊇・・・⊇In'・・・となることが分かります。よって、I1',I2',・・・In'・・・の共通部分は空集合ではありません。よって、I1',I2',・・・In'・・・の共通部分の補集合、つまり、I∞が、全体集合であるI∞と等しくなりません。よって、矛盾が生じました。よって、無限拡大系列は存在しないとなります。そして、無限集合が存在すれば、無限拡大系列は存在することになってしまいます。よって、無限集合は存在しないとなります。