• 締切済み

無限集合

環[‪√‬-2]={a+b‪√‬-2|a,b€Z}を考えるとき、(Z[‪√‬-2])^×が無限集合であることの示し方を教えて頂きたいです。

みんなの回答

回答No.1

ご自身が質問した https://okwave.jp/qa/q9811261.html と言ってることが矛盾してるではありませんか... きちんと問題を確認しましたか? それと、一応確認ですが、(Z[‪√‬-2])^× の定義は何ですか?環の単元群でいいのですか?何れにせよ、確認し直してください。

rsyfivo3587
質問者

補足

https://okwave.jp/qa/q9811261.html この問題を教えて頂けませんか

関連するQ&A

  • 集合は有限集合と無限集合だけですか?

    有限集合の元の数を考えるとき、 「いかなる有限集合よりも元の数が多い有限集合は存在しない」------(A) ことがわかります。一番大きな基数の有限集合が存在しないと言い換えても良いですね。 ところがここに無限集合の概念を導入すると 「いかなる基数の有限集合よりも大きい集合として無限集合がある」---(A’) ここで「大きい」とは二つの集合の元を対応させて行くと、「大きい」方の元が余ることを言います。 ここでは、“超有限集合”=無限集合という関係が成り立ちます。 さて、公理的集合論の公理により、無限集合Rから常にPower(R)が作れるので、 「いかなる無限集合よりも濃度の数が多い無限集合は存在しない」------(B) が成立しました。 一番大きな濃度の無限集合が存在しないと言い換えても良いですね。 ここで、有限、無限に続く第三の概念として、“超無限集合”=寿限無集合(仮名)という概念を導入します。 すると、(A)に対して(A’)が成り立ったように、(B)に対して(B’)が成り立ちます。 「いかなる濃度の無限集合よりも大きい集合として寿限無集合がある」---(B’) 質問1:このような寿限無集合はZFC公理系で無矛盾に定義できますか? 質問2:集合の種類は有限と無限の二種類でしたが、第三の概念を導入すると、無限集合では成り立たないが寿限無集合の世界だけで成り立つ定理も発見できると思うのですが、このような概念の拡張をした数学者はいましたか? 質問3:有限と無限以外に第三の概念を導入することが無意味であると立証できますか?

  • 無限集合の定義で

    ∃f:全単射 such that f:A→B (但し、BはAの真部分集合) の時、Aを無限集合と言うのがデデキントの無限集合の定義だと思いますが 非可算集合の時にも(例えば実数体)このような全単射写像はするのでしょうか?

  • 無限集合に関することです。

    無限集合に関することです。 自然数全体を可算無限個の互いに交わらない集合A1,A2,A3・・・(どのAkも可算無限集合)の和として表わされることを示したいのですがどうすれば良いですか? 可算無限集合は自然数全体の集合との間に1対1対応の関係がある集合のことなのに、自然数全体を互いに交わらない集合で示せるのでしょうか?

  • 全ての集合の定義を元とする無限集合は定義可能?

    年末以来ずっとべき集合というものを考えていたのですが、このべき集合というものがある限り、すべての集合を元とする無限集合を定義できない事が判りました。 すなわち、 今、考えられる全ての集合を元とする無限集合Xが定義可能と仮定する。 すると、その無限集合からべき集合Power(X)が必ず定義可能である。 Power(X)はXの元になっていないために、最初の仮定が間違っていることが証明される。 この事実が意味する事は、 「集合Xからべき集合P(X)を造ることが出来る」-----(A) 「集合を元とした無限集合Xを定義することができる」---(B) 暗黙の前提としている公理系では(A)と(B)が両立しないという事になります。 この袋小路はどう考えればよいのでしょうか? (A)が常に真ではない? (B)が常に真ではない? (A)が偽の場合のみ(B)が真である? (A)が真の場合は(B)が偽である? 暗黙の公理系になにか公理を見落としている(不足している)? 考えるヒントを頂ければ助かります。

  • 可算無限集合について。

    aを任意の有理数としたとき、0<a<1を満たすaの集合って可算無限集合ですか?

  • 直積集合の空集合と全集合

    σ集合体Ψ、Ωを使って、(*)のように直積をとった集合族の空集合と 全集合は何になるんでしょうか?ちなみに、Ψは集合Y、Ωは集合Zを もとに作られているとします。 {A×B; A∈Ψ, B∈Ω} (*) 空集合を0で表記すると、(*)の空集合は0×0、全集合はY×Zと思った のですが、正しいでしょうか。また、0×BやA×0はどう扱うのでしょうか。 Y×BとA×Zは全集合ではないというのはなんとなくわかるのですが…。 よろしくお願いします。

  • 「集合Sの真部分集合S'からSへ全単射写像が存在する時、Sを無限集合という」を使ってのR:無限の証明は?

    無限集合の定義は 「集合Sの真部分集合S'からSへ全単射写像が存在する時、Sを無限集合という」 だと思います。 NやQやZは無限集合であることはわかりますが、 R(実数の集合)が無限集合であることは上の定義から導く事は可能なのでしょうか? N⊂Rで 「無限集合を含む集合は無限集合である」 という命題からRは無限集合と導く他ないのでしょうか?

  • 無限集合に関する証明

    無限集合が存在しないことを証明しました。 以下の証明が合っているかどうか知りたいです。よろしくお願いします。 <定義> 集合の系列、A1,A2,・・・An・・・について、以下の条件が成り立っているとき、そのときに限り、この系列を、無限拡大系列と呼ぶことにします。 1:任意のnについて、An⊆An+1 <証明> 無限拡大系列が存在すると仮定します。任意の無限拡大系列をI1,I2,・・・In・・・とします。I1,I2,・・・In・・・の和集合をI∞とします。あるnについて、I∞=Inと仮定します。まず、無限拡大系列の定義より、In⊆In+1となるIn+1が存在します。よって、I∞⊆In+1。しかし、I∞の定義より、In+1⊂I∞。よって、矛盾が生じました。よって、全てのnに対して、、I∞≠In。そして、I∞の定義より、全てのnに対して、In⊂I∞。よって、全てのnに対して、In⊆I∞。これより、I∞を全体集合としたときの、I1,I2,・・・In・・・の補集合をそれぞれ、I1',I2',・・・In'・・・とすれば、全てのnに対して、In'は空集合ではありません。そして、無限拡大系列の定義から、I1'⊇I2'⊇・・・⊇In'・・・となることが分かります。よって、I1',I2',・・・In'・・・の共通部分は空集合ではありません。よって、I1',I2',・・・In'・・・の共通部分の補集合、つまり、I∞が、全体集合であるI∞と等しくなりません。よって、矛盾が生じました。よって、無限拡大系列は存在しないとなります。そして、無限集合が存在すれば、無限拡大系列は存在することになってしまいます。よって、無限集合は存在しないとなります。

  • 無限順列に対して無限組合せを考えると

    Aを要素が3つの有限集合{x,y,z}とします。Nを自然数の集合{1,2,3,4,…}とします。 写像:A→Nを考えます。 これは幾何学的には空間N^3を表しています。 また、解析的には、項数が3の自然数の数列を表してます。 例えばピタゴラス数(x^2+y^2=z^2を満たす自然数x,y,z)を考えるといった実用性があります。 以上のことを、組合せで考えます。 例えばピタゴラス数では、x^2+y^2=z^2を満たす自然数x,y,zに、同じ組合せを同一視したり、x<y<z、もしくは、x≦y≦zといった制限を与えることになります。 これはごく普通の考えと思います。 次に、Nを自然数の集合{1,2,3,4,…}とします。Aを要素が3つの有限集合{0,1,2}とします。 写像:N→Aを考えます。 これは組合せ論的には、3つの要素を無限個並べた順列を表しています。 また、解析的には、各項が0,1,2の無限数列を表してます。 例えば0≦x≦1の実数xの3進法表示(ただし、0.210222…=0.211000…といったような同一視をする)を考えるといった実用性があります。 以上のことを、(重複)組合せで考えてみると、3種類の数字の数列に対して、イレカエをしても同じになる並べ方を同一視することになります。 統計学的には、無限個並べた3種類の数字の度数分布を考えることになります。 絵描きが無限の溝があるパレットに、3種類の絵の具からひとつずつ選び、一定量を出して並べていった後、かき混ぜたときの色を考えることになります。 これもまあ普通の考えと思うのですが、いわゆる「無限組合せ」は聞いたことありません。 なにか実用性はあるのでしょうか。数学の他の分野と関連はあるのでしょうか。 実数(√2)-1の3進法表示で、無限桁の数字0、1、2の「割合」はそれぞれ1/3、1/3、1/3なのでしょうか? 3種類の数字のなんらかの数列(無限順列)に対して、「無限組合せ」を考えたときに、何か面白いことはあるのでしょうか。

  • 「直積集合の全集合」とは?

    別の方の質問 http://oshiete1.goo.ne.jp/qa4877672.html を見ていて気になった点についてです。 「集合族の空集合と全集合」とは何でしょうか? 通常、「空集合」や「全集合」は、何らかの集合の ベキ集合族に対して定義される概念かと思います。 一般の集合族に対する「全集合」とは、どのように 定義されるのでしょう? 「集合族Φの全集合」と言ったら、Φ自身のことでしょうか、 それとも、Φの最大元のことでしょうか? ご存知の方、解説よろしくお願いします。 先の http://oshiete1.goo.ne.jp/qa4877672.html の例で言えば、 ΨとΩの集合族としての直積は、質問氏の書いている Ψ×Ω = { (A,B) ; A∈Ψ, B∈Ω } ですが、これは、 ベキ集合族ではないし、σ集合族でもありません。 Y と Z の空間としての直積に付随するσ集合族 という意味で 言っているのだとすれば、「直積」は、このΨ×Ωではなく、 Ψ×Ωの任意個の元の和集合全体が成す集合族 になるハズです。 その際、「全集合」が Y×Z であることは違いありませんが… また、A×0 = 0×B = 0 と考えるなら、この式の「×」を 0 と B の集合としての直積と解釈したことになります。 Ψ×Ω = { A×B ; A∈Ψ, B∈Ω } と表記するのならば、 右辺内の A×B は、A と B の対 (A,B) という意図で 標準的でない書き方をしてしまったものと解釈すべきで、 A と B の集合としての直積ではありえません。 その場合、0×B は、Ψ×Ωの元で Y成分が 0、Z成分が B の ものであって、空集合ではありません。