• 締切済み

複素微分の存在→正則の証明

複素関数fの複素微分が存在するなら、その関数は正則であるということを証明するプロセスは複素関数論の教科書にはすべて載っていると思います。 私の本では複素微分df/dzにおいてdz=h+ikとして、k=0でh→0としたものと、h=0としてk→0としたものが一致しなければならないということから正則であることを誘導しています。複素微分による2つの特殊な例を適用したように見えるのですが、これで演繹的に証明したことになるのでしょうか。 これに関連して、正則とはコーシーリーマンの関係が成立することであり、それが正則の定義と考えていいのでしょうか。つまり正則ならコーシーリーマンの関係式が成立することを証明せよ、というようなことはないと思っていいでしょうか。 なお、正則→複素微分の存在という証明が別途出てきますが、こちらは平均値の定理とコーシーリーマンの式で演繹的に証明できたような印象なのですが。

みんなの回答

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.6

https://ja.wikipedia.org/wiki/正則関数 の定義 に書いてある通り 複素関数 f(z) が点 a で複素微分可能なだけでなく、 点 a を含む適当な(どんなに小さくてもよい)近傍 U(a) でも複素微分可能である(近傍 U(a) の全ての点で複素微分可能である)とき、 複素関数 f(z) は点 a で正則であるという(1点における正則性) f(z)=|z|^2はコーシーリーマンの関係が成立しているけれども z≠0で成立しないから z≠0で微分不可能で正則ではないから 複素関数 f(z)=|z|^2 が点 0 で複素微分可能であっても、 点 0 を含むどんなに小さい近傍 U(0)であっても U(0)-{0}∋z≠0で複素微分可能でないから、 f(z)=|z|^2 は 点 0 でも正則ではないのです

参考URL:
https://ja.wikipedia.org/wiki/正則関数
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.5

https://ja.wikipedia.org/wiki/正則関数 に書いてある通り fがzの近傍Uで微分可能となるようなUが存在するとき fはzで正則というのです f(z)=|z|^2はコーシーリーマンの関係が成立しているけれども z≠0で成立しないから z≠0で微分不可能で正則ではないから fがzの近傍Dで微分可能となるようなUが存在しないから z=0でも正則ではないのです

参考URL:
https://ja.wikipedia.org/wiki/正則関数
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.4

fがzの近傍Dで微分可能となるようなUが存在するとき fはzで正則というのです f(z)=|z|^2はコーシーリーマンの関係が成立しているけれども z≠0で成立しないから z≠0で微分不可能で正則ではないから fが0の近傍Uで微分可能となるようなUが存在しないから z=0でも正則ではないのです

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.3

C=(全複素数の集合) f:C→C z∈C f(z)=|z|^2 z=x+iy,x,yは実数とすると f(x+iy)=x^2+y^2 u(x,y)=x^2+y^2 v(x,y)=0 u_x(x,y)=2x u_y(x,y)=2y v_x(x,y)=0 v_y(x,y)=0 u_x(0,0)=0=v_y(0,0) u_y(0,0)=0=-v_x(0,0) だから z=0で f(z)=|z|^2はコーシーリーマンの関係が成立しているけれども z≠0で成立しないから z=0で正則ではないのです だから 正則とは コーシーリーマンの関係が成立することではありません コーシーリーマンの関係が成立することは 正則の定義ではありません

skmsk1941093
質問者

お礼

回答ありがとうございます。 ご回答の言葉を意味を変えずに並び替えると以下のようです。 ------- f(z)=|z|^2は, z=0でコーシーリーマンの関係が成立しているけれども z≠0で成立しないからz=0で正則ではない ------ これでよろしいでしょうか。ただ、z≠0では正則かそうでないか言及されていませんが、どうなるのでしょうか。 z=0でC.Rなのでz=0で正則であり、z≠0ではC.Rが成り立たないのでz≠0で正則でない、ではないのでしょうか。 すなわち、 ------ f(z)=|z|^2は, z=0でコーシーリーマンの関係が成立しているのでz=0では正則 z≠0でコーシーリーマンの関係は成立しないからz≠0で正則ではない ------ と考えてはだめでしょうか。そうなるとC.Rと正則がぴったり重なるのですが。

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.2

C=(全複素数の集合) 複素関数 f:C→C z∈C に対して fがzの近傍Dで微分可能となるようなDが存在するとき fはzで正則というのです f:C→C z=x+iy∈C,x,yは実数 f(x+iy)=u(x,y)+iv(x,y) としたとき u,vがzの近傍Dで連続な偏導関数を持ち Dでコーシーリーマンの関係式 u_x=v_y u_y=-v_x が成り立つ事と 「 fがzの近傍Dで微分可能となるようなDが存在する 」 事は確かに同値なのだけれども 正則の定義は 「 fがzの近傍Dで微分可能となるようなDが存在する 」 事なのです ある複素関数fが正則である事を証明する時は コーシーリーマンの関係式 の方を定義にした方がよいと思うかもしれないけれども 正則である事を条件とするとき 例えば f(z)が|z-a|<Rで正則とするとき f(z)=f(a)+f'(a)(z-a)+… と級数展開できる事を証明するときは |z-a|<Rで正則だから 正則の定義は fがzの近傍Dで微分可能となるようなDが存在する から |z-a|<Rで微分可能と直接いえて f'(a)が存在するといえる から 正則の定義は 「 fがzの近傍Dで微分可能となるようなDが存在する 」 の方がよいのです 複素関数論においては ある関数が正則である事を証明する場合よりも 正則関数に対して色々な事が成り立つ事を 証明する場合の方が圧倒的に多いのです だから 正則の定義は 「 fがzの近傍Dで微分可能となるようなDが存在する 」 の方がよいのです

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

C=(全複素数の集合) 複素関数 f:C→C z∈C に対して fがzの近傍Uで微分可能となるようなUが存在するとき fはzで正則というのです だから fがCの全点で微分可能ならば、正則の定義から fは正則なのです だから 定義であって証明すべき事でありません コーシーリーマンの関係が成立することは正則の定義ではありません fがzの近傍Uで微分可能となるようなUが存在する という正則の定義から コーシーリーマンの関係が成立することが いえるのです

skmsk1941093
質問者

お礼

回答ありがとうございます。私が見ている関数論の本は、”....f関数が、いわゆるコーシーリーマン(C.R)の偏微分方程式系...を満たすときfは正則な関数であるという” とあります(その本で初めて正則が出てくるところ)。 この言い方だと”関数fがC.Rである”ということがその関数fが正則である”と同値と読めるのですが。一方で論理展開の中で別途正則が定義されていて(近傍での微分可能性とか)その正則からC.Rが演繹されたとしたら、ある見方からすると正則とC.Rは同値という風に見えるということはアリということにはならないでしょうか。その関数論の本を見ると、正則=C.Rであると宣言して、正則(すなわちC.R)⇔複素微分が存在する を双方向に証明しています。ご指摘の点は複素微分が存在する(正則)⇔C.Rが証明されるという流れなのでしょうか。演繹的に無条件に証明されるものが負荷されると定義がいろいろになる可能性があるということなのでしょうか。

関連するQ&A

  • 微分可能と正則

    ω=f(z)がZ=a∈Dで微分可能である。 ω=f(z)がZ=aで正則である。 この2つの違いを明確に教えてください。 よくわからなくて困っております。 もう一つあります。 ω=f(z)=u(x,y)+iv(x,y)がD上正則であることの必要条件をコーシー・リーマンの関係式を用いて表わすにはどうしたらいいのですか?

  • 複素関数の正則性。

    領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w = f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいのですが、実際の関数が与えられていないため、∂u/∂xや∂v/∂yなどの計算ができなくて困っています。 どうすれば良いのでしょうか? よろしくお願いします。

  • 複素関数の証明

    たびたびすいません>< (1)関数f(z)=u(x,y)+iv(x,y)が正則なら  △lfl^2=4lf'l^2≧0 がなりたつ (2)さらにfが零点を持たないとき  △loglfl=0 がなりたつ 以上を証明するのですが、(1)は普通に作用させたらu,vの2階微分が消えず、また1階微分も2乗になりませんでしたf^^;(2)も2階微分が消えないのです><是非教えてください。。2階微分にもコーシー・リーマンのような方程式があるのですか?

  • 全複素平面上で正則な関数f(z)は

    全複素平面上で正則な関数f(z)は lim_[r→0] ∫_Cr f(z) dz = 0 を満たすことを示せ。ただし、Cr = { r*exp(iθ) | 0≦θ≦π } (r>0の上半円周) 考えた証明の方針: 単純閉曲線C:= Cr + Cr' (ただし、Cr': = { x | -r≦θ≦r } )と定め、 まず、コーシーの積分公式を証明。すなわち、∫_C f(z) dz = 0 次に、∫_C f(z) dz = 0 に r→0として題意を示すと思いました。 しかし、∫_-r^r f(z)dz =0になることが言えなくて、つまづいています…。 どなたか知恵を貸してください。

  • 複素平面での微分可能ということ。

    複素平面で微分可能ということは今、見ている本には以下のようになっています。 -------- ここから 定義 f(z)は領域Dで定義されているものとする。Dの点z0において lim (f(z0+dz)-f(z0))/dz  (lim dz→0) なる極限が存在するとき、f(z)はz0で微分可能であるといい、この極限をf'(z0)で表し、z0におけるf(z)の微分係数という。 ------- ここまで ここで質問ですが、これだけの定義と複素平面の性質からz0で微分可能ならば微分係数が微分の方向に依存しないということを誘導して示すことは可能でしょうか。それとも微分可能という定義に含まれることになるでしょうか(定義なのだから証明する必要なし)。 1変数の実関数f(x)がx0で微分可能という場合、右から近づいても左から近づいても極限としての微分係数が同じということが要求されます。これは誘導されるものではないように思います。そう言う意味で複素平面での微分は方向に依存しないということは誘導されたりするものではないということになるでしょうか。もし、複素平面での微分が方向に依存しない、ということが定義ということであれば、そういう性質を持つものだけを取り出して考えると言う意味になるのでしょうか。

  • 複素解析の問題

    e^(iz)-e^(-2iz)を微分するのですが、まず、正則関数であるかを確かめないといけませんよね。 z=x+iyとしてみて代入したりいろいろやってみたのですが、なんだかよく分かりません。 また、コーシーリーマンの式をどう適用すればいいのか分からないのですが誰かわかる方よろしくお願いいたします。

  • 複素関数が正則であるための条件を求める

    以下の画像のような条件で 1.f(z)がz=0で微分可能であるためのa,bの条件を求めよ 2.f(z)がz=0で正則であるためのa,bの条件を求めよ という問題があるのですが2番がわかりません。 1番はu,vをそれぞれx,yで偏微分してコーシー・リーマンの関係式にあてはめると a(1 + b) = -1 になりました。 2番がわかる方、計算するための条件、計算手順などを教えていただけませんでしょうか。 よろしくお願いします。

  • 複素関数

    聞きたいことが2つあります。 1つ目は複素関数w=u+ivについてです。 この関数がコーシーリーマンの関係式を満たすとき、w'=a+ibもコーシーリーマンの関係式を満たすことを示したいのです。 まず、wにコーシーリーマンの関係式を適用してからラプラスの関係式を適用して d^2u/dx^2 + d^2u/dy^2 =0 d^2v/dx^2 + d^2v/dy^2 =0 となります。 このあと、a=du/dx + du/dy b=dv/dx + dv/dy と定義します。 でコーシーリーマンの関係式を使ったのですがどうにも一致しません^^; aとbの定義が違うのでしょうか? 2つ目は円柱周りの流れを表す複素速度ポテンシャルについてです。 f(z)=Az+B/z=φ+iψ f'(z)=u-iv と定義されていて、境界条件が設定されているのですが使い方がよくわかりません。 f(z)=φ+iψで、ラプラスが成り立つことは証明済みなのですが、これをうまく使うのでしょうか? どうぞ、よろしくお願いします。

  • 正則について。

    以下にしめす関数の正則性について、コーシー・リーマンの方程式を用いて調べなさい。また、正則であれば導関数も求めなさい。 f(z)=Ze^z で、z=x+viに対して、e^z=u+vi,e^z=e^x*e^y                 =e^x(cosy+isiny) とすると、 u=e^x*cosy,v=e^x*siny とこんな感じで解いているのですが、どこでコーシーリーマンの定理を使うかもわかりません。どなたかご指導お願いします!m(_ _)m

  • 複素関数の正則性。

    誤って、回答締め切りをしてしまったため、再度立てさせていただきます。すみません。 領域 D が実軸に関して対称であると仮定する。w = f(z) が正則ならば,w =¯f(¯z). も正則であることを示せ。 という問題が分かりません。 最終的に、「コーシー・リーマンの関係式を満たすので正則」と結論づけたいです。 z=x+iy として、f(x-iy)とします。 fが具体的に与えられていないため、どのように∂u/∂xや∂v/∂yなどの計算を行えば良いのかが分かりません。 どうすれば良いのでしょうか? よろしくお願いします。