• 締切済み
  • 困ってます

物理運動方程式について

高3で物理勉強しています。 運動方程式の原則について疑問があります。 「x軸方向とy軸方向に分けて計算する。x軸方向は運動方程式。y軸方向は釣り合いの式で計算する。」とあります。 例えば写真の式だと、 x軸方向ma=-mgsinθ y軸方向N=mgcosθ x軸方向では反対の力を負で表している。 なのにy軸方向では反対の式も正で表している。 式の名前が違うのはわかっていますが、違和感を感じずに入られません。 なぜこのような立式になるのでしょうか。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数59
  • ありがとう数1

みんなの回答

  • 回答No.1

写真がないのですが、写真は投稿できますか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます 追加し忘れていました!

関連するQ&A

  • 高3で物理勉強しています。

    高3で物理勉強しています。 運動方程式の原則について疑問があります。 「x軸方向とy軸方向に分けて計算する。x軸方向は運動方程式。y軸方向は釣り合いの式で計算する。」とあります。 例えば写真の式だと、 x軸方向ma=-mgsinθ y軸方向N=mgcosθ x軸方向では反対の力を負で表している。 なのにy軸方向では反対の式も正で表している。 式の名前が違うのはわかっていますが、違和感を感じずに入られません。 なぜこのような立式になるのでしょうか。 ※前回同じ投稿をしたのですが、写真を載せ忘れていました

  • 運動方程式について(初歩質問)

    はじめまして。よろしくお願いします。 運動方程式の立て方についてお聞きしたいのですが、 問題で、物体を地上の一点から、水平面(xy方向)と角度Θの方向に初速Vゼロで投げるときの運動方程式が F(ベクトル)=(0,0,-mg)となるようなのですが、 なぜ、X方向のV0cosΘと、鉛直方向Z方向のV0sinΘは 無視されるのでしょうか? 私の考えでは 1、投げ上げた瞬間~最高点到達まで F=(v0cosΘ,0,v0sinΘ-mg) 2、最高点到達後~地面につくまで  F=(v0cosΘ,0,-vosinΘ-mg) だと考えてしまいました。 また、1軸だけで(例えば水平右向きを正にとる。など)で考えるのかな?そうならばわかるなと思ったのですが、 違う問題で 質量mの物体を、傾斜角αの斜面の下から初速V0で直上昇させる場合で、 斜面をX軸とし、その斜面に垂直をY軸とすると F=(-mgsinα-μN,N-mgcosα,0)となるようで、 これだと斜面上方を正とする軸と、斜面に鉛直上方を正とする軸というふうに2軸で考えているんで・・・・・ というように、運動方程式がよくわかりません。教えていただけませんでしょうか?

  • 運動方程式

    運動方程式で根本的な質問なのですが 運動方程式 F=maとします。 xの負の方向にFが働いていた場合 -F=maでいいでしょうか? 頭の中では-F=-maと考えてしまうのですが とりあえず、x座標の正負は力だけ左右され maはそのまんまおくということで覚えていいでしょうか??

  • 運動方程式の考え方

    質量mの金属球に長さLの糸の先端を接着剤でつける。糸の他端を点Oに固定して鉛直に垂らす。球に水平な初速度v(0)を与える。ここで直交座標を点Oを原点とし水平方向(右向き正)をx軸、y軸(上向きを正)のように取るとき、運動方程式は、(Sは糸の張力)   mdv/dt=-mgsinψ(接線方向)…(1)   mv^2=S-mgcosψ(向心成分)…(2)  (1)(2)に速度を内積して,辺辺加え  初期条件ψ=0,v=v(0)を考慮して   S=mg(v(0)^2/gL-2+3cosψ)…(3) が導けるが、 v(0)^2/gL=5(ψ=π)のとき、S=0,この時刻をt(0)とする。t(0)<tの時、(3)を利用して S>0を示し円軌道を続ける。ここがすっきりしません。t(0)<tの時、円軌道上にある保障はないのに、どんな本も(3)(「つまり(1)(2)の運動方程式が成り立つことを前提として」)より説明されています。つまり、t(0)まで円軌道しているのでΔt(極めて短い時間)後も円軌道上にあるはずであるから(つまり、運動方程式瞬間では変われないから)(1)(2)が成り立つとしてよいから(3)が成り立つのでS>0と考えてよいのでしょうか。ご指導を宜しくお願いします。

  • 運動方程式

    運動方程式(長文失礼します) 写真は教科書の図をノートに写したものです。 (下の図についての教科書の記述) 質量mの物体に軽くて伸びない糸をつけて、鉛直上向きに引く。このとき、鉛直上向きを正として、意図が物体を引く力をTとし、物体に生じる加速度の大きさをaとすると、物体の運動方程式はma=T-mg。 (上の図についての教科書の記述) 滑らかな水平面上に、軽くて伸びない糸Cで繋がれた物体A,Bがある。Aを水平方向右向きに大きさFの力で引くと、A,Bは糸で繋がれたまま、ともに右向きに動く。この時、糸C がBを引く力の大きさをTとすると、糸C は同じ大きさT の力で、Aを左向きに引いている。A,Bの質量をそれぞれM,mとし、右向きを正として、加速度をaとすると、それぞれの運動方程式はA;Ma=F-T,B;ma=T、A,Bを一体と考えたときの運動方程式は、(M+m)a=F (疑問) (1)下の図の事象についてはmgを運動方程式に入れ、上の図の事象については、入れていないのはなぜでしょうか? (2)図にa(加速度の方向)が書かれていますが、これはどうやって判断して記入しているのでしょうか? まさか、「こうなりそう」で書いているわけではないでしょうから (3)上の図の教科書の記述 A,Bを一体と考えたときの運動方程式は、(M+m)a=F これはどのように考えて、立式しているのでしょうか? (4)両方の問題で軽くて伸びない糸と書かれていますが、これは質量を考えない事以外に何か問題に関係してきますか? どうか宜しくお願いします。

  • 運動方程式

    F=maを使い 運動方程式を導くときに、x,y座標図面を書くとします。 座標軸の正方向は適当に設定していいのでしょうか?? 座標軸の負方向にmaの力を設定すると教科書に書かれています。 もし、正方向を逆に設定したばあい、運動方程式も違ってくるのですが よいのでしょうか?

  • 運動方程式について

    運動方程式について 運動方程式F=ma(ma=F)について質問があります。 個人的に理解を深めようと、 運動方程式に関する様々なHPを閲覧しているのですが、 ところどころで、F=maについては、 a=F/m や、m=F/a と変形することは誤りだ、 という記述が見られます。 これが意図することは、そもそもその式が成立せず、 正しい値が導けないという意味なのか、 それとも、そのような変形は、 運動方程式の理念のようなもの(?)に反するため、 行うべきではないということなのでしょうか。 そして、もしこのような変形が行われるべきでないとするならば、 「質量5.0kgの物体に糸をつけて鉛直上向きに100Nで引くときの加速度aの向きと大きさを答えよ」 という問題が出たときに、 どういった方法で解けばよいのでしょうか。

  • 運動方程式について

    軽い糸に質量mのおもりAと質量m/2のおもりBをつなぎ糸をなめらかに回転する軽い滑車に掛けた。 ただし、おもりが滑車に衝突しない範囲で考える。重力加速度の大きさをgとする。 おもりA , Bは一定の加速度で運動をした。おもりA , Bの加速度の大きさをaとする (1)運動方程式を立てるとすると Aの場合下向きの加速度を正としてma=mg-T, Bの場合上向きの加速度を正としてma/2= T-mg/2 となりますよね つまり(運動方程式を立てる時、それぞれの物体について、それぞれ加速度の向きを考えて解かなければならない)ということですよね? この場合A , B全体で加速度を上向きに正としたり、下向きに正とするのはだめということですよね?

  • 運動方程式のことです

    物理の運動方程式のことです。 等速で運動していて加速度が0で、運動方程式を問う問題があったときは何と答えればいいのでしょうか? 「ma=0」ですか?それとも、「運動方程式0」ですか?

  • 単振り子の運動方程式

    重力加速度g、質量m、紐の長さl、空気抵抗無視。 単振り子の運動方程式はこうなりますよね。 mlθ"=-mgsinθ これがよくわからないのです。 どういう座標系についての運動方程式なのですか? 軌道にそってx軸を定めると θl=x mx"=-mgsinθ  軌道に沿った運動方程式? ⇔mlθ"=-mgsinθ  どういう座標系の運動方程式なの? そしてこれの一般解はどういう風になりますか? 初期条件としてt=0でθ=φとします。