解決済み

数学(組合せ)問題の質問

  • 暇なときにでも
  • 質問No.974891
  • 閲覧数144
  • ありがとう数0
  • 気になる数0
  • 回答数1
  • コメント数0

お礼率 4% (2/42)

9人を3つの組A,B,Cに分けるとき、特定の2人が同じ組に入る場合の数を求める計算ですが、3×7C3×6C3=420で正解でしょうか。
通報する
  • 回答数1
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

質問者が選んだベストアンサー

  • 回答No.1
レベル8

ベストアンサー率 23% (13/56)

420 は正解ですね。式は違うようですが・・・

a 3×7C 1 ×6C3  あるいは
b 3×7C3× 4C1  または
c 3×7C3× 4 C3  となります。

a は 3・・2人が ABC どこに入るか
  7C1・2人と同じ組になる人の決め方(残り7人から1人)
  6C3・残る組の決め方(残り6人から3人、残る3人が最後の1組)
という考え方、

b は 3・・2人が ABC どこに入るか
  7C3・残る3人組の一方の決め方(残り7人から3人)
  4C1・2人と同じ組になる人の決め方(残り4人から1人、残る3人が最後の1組)
という考え方、

c は 3・・2人が ABC どこに入るか
  7C3・残る3人組の一方の決め方(残り7人から3人)
  4C3・もう一方の3人組の決め方(残り4人から3人、残る1人が2人と同じ組)
という考え方です。
このQ&Aで解決しましたか?
関連するQ&A
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-

特集


開業・独立という夢を持つ人へ向けた情報満載!

ピックアップ

-PR-
ページ先頭へ