• 締切済み

高1 数学A

高1数Aの「整数の性質」という分野についての質問です。 問題で、「すべての自然数nは、n= 2k, 2k+1 (kは整数)で表される。」と書いてありました。 kが整数ということは、マイナスまで入ると思います! k= -1をn= 2kに代入すると、nは -2になってしまうように、 nは自然数であるはずなのに、マイナスになってしまうと思います! それでも、kを整数と仮定?するのは、どうしてですか?教えてください!

みんなの回答

  • 178-tall
  • ベストアンサー率43% (762/1732)
回答No.3

>すべての自然数nは、n= 2k, 2k+1 (kは整数)で表される … 「自然数」は、「n= 2k, 2k+1 (kは整数)で表されれる」数の部分集合だから、 誤った言明じゃない。     

  • teppou
  • ベストアンサー率46% (356/766)
回答No.2

「すべての自然数nは、n= 2k, 2k+1 (kは整数)で表される。」  この文は、n=2k, 2k+1 のどちらかで必ず自然数を表すことができる、と言っているのであって、自然数以外の数を表すことはない、とは言っていません。  この文には、問題は全くありません。  問題は、質問者様の国語力です。

  • maiko04
  • ベストアンサー率17% (345/1956)
回答No.1

「kは整数」というのは「0を含む、少数や分数は含まない」という意味です。 nをkで表したのでこれでいいのです。 kを整数として自然数nを2k、2k+1と書けば おっしゃるように間違いですね。

関連するQ&A

  • 数学的帰納法

    整数nに対して、(n^3)+5nは6の倍数を証明する問題で 数学帰納法を用いると (1) n=1のとき (n^3)+5n=6 6の倍数 (2) kが自然数のとき(k^3)+5k=6A Aは整数とする このときどうしてkのk+1を代入するのですか? 計算をすると (k^3)+5k =(k^3)+5k+3(k^2)+3k+6 =6A+3k(k+1)+6 になりましたが これをどのような意味をもつのか分かりません。 どのように証明するのでしょうか? (3) (n^3)+5nは6の倍数とすると (-n)^3+5(-n)のときやn=0のときもどうして6の倍数になるのか分かりません。

  • 数学の問題  私の答え 合ってますか?

    数列(an )初項a1 から第 n項までの和をSnとあらわす。 この数列が、 (n+2 )an=3Sn を満たす。 数列 anの初項a1が整数である時、Snは、整数であることを示せ。 この問題で、 (n+2 )a(n)=3S(n) (n+1 )a(n-1)=3S(n-1) n≧2 からanを求めて、 (n+2)an =3Sn (n+1)an-1=3Sn-1(n≧2) これから a(n)-a(n-1)=3a(n) a(n)=-1/2a(n-1) 以下 数学的帰納法を用いて n=2 a(2)=-1/2a(1) 整数 n=k a(k) =-1/2a(k-1) コレを整数と仮定すると n=k+1 a(k+1)=-1/2a(k) a(k)が整数なので、a(k+1)も整数 数学的帰納法により すべての自然数で、a(n)は、整数。 よって、 Sn=Σak=a1(1-(ー1/2)^n )/1-(-1/2) コレで、Snも整数であることが示せた これは、正解でしょうか??? お願いします。

  • 数学的帰納法について

    数学的帰納法について質問があります。 数学的帰納法の問題で http://www.geisya.or.jp/~mwm48961/kou2/inductive_method3.htm のnが〇以上(〇には具体的な数値が入ります)のとき 証明せよ の問題の解き方は理解できるのですが考え方に不明な点があります。 __________________________________________________ 数学的帰納法は (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(A)が成り立つことを仮定する. その仮定を使って n=k+1 のとき(A)が成り立つことを証明する. __________________________________________________ とのことですがkは任意に自然数として理解をしていましたがこの考え方をすると、 nが〇以上の時について証明せよ。において (I) n=〇のとき(A)が成り立つことを証明する. (II) n=kのとき(k>=〇)(A)が成り立つことを仮定する の(k>=〇)の条件を書く必要があるのかがわかりません。 すなわち、 私が考えているのは、 (I) n=〇のとき証明できたのだから (II) n=kのとき(k>=〇)ではなくn=kのとき(k>=〇+1) と何故書かないのかということに疑問があります。 そのため、 すべての自然数 n について,次の不等式が成り立つことを証明せよ. の問題では、 (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(k>=1)(A)が成り立つことを仮定する. と書かないのか という内容に混乱をしています。 これについて先生に尋ねてみたら すべての自然数において問題は自然数1から必ず行うものだから (k>=1)というのは暗黙の了解である。 だから、書かなくていい といわれました。 この考え方にあまり納得いかないので、わかりやすく解説をしてください。

  • 整数問題について

    適当ですが、例えば「全ての自然数nについてn^3+5nが3の倍数であることを示せ」 という問題があれば、n=3k、n=3k±1とおいて式に代入しますよね。 整数問題を扱った参考書を見ると、k:整数として置いているのですが、 n^3+5nに実際にn=3kを代入し、 n^3+5n=3(kの式)となっても、kは整数という条件なのでこれにk=0を当てはめれば0になってしまいます。 質問(1) 上の説明 質問(2) k:自然数 とおいて議論を進めても減点はされないのか よろしくお願いします。 もしかすると0も3の倍数…?

  • 数学的帰納法

    数学的帰納法の、証明の過程において、よくわからないところがあります。回答よろしくお願いします。 例えば、次のような問題。 「nが5以上の自然数のとき、2^n>n^2(・・・A)を証明せよ。」 (1)n=5のときAは成り立つ。 (2)kを5以上の自然数として、n=kのときAが成り立つと仮定すると、n=k+1のときにAが成り立つ。 (1)、(2)より与命題は証明できた。 この証明では、2^k>k^2を用いて、ちょっと計算をすることによって2^(k+1)>(k+1)^2を導いて、n=k+1のときにAが成り立つことを言いますよね。でも僕は、5以上の全ての自然数kについて2^k>k^2を仮定した時点で、何の計算も必要なしに2^(k+1)>(k+1)^2が言えると思います。なぜなら、例えばk=5とすると、k+1=6となりますが、kに当てはまる値の条件と2^k>k^2より、2^6>6^2も言える、つまり、k+1に当てはまる数はすべてkに当てはまるからです。 僕の考えの間違いを教えてください。

  • 数学的帰納法について

    1・3+2・4+3・5+・・・+n(n+2)=(1/6)n(n+1)(2n+7) これがすべての自然数nに対して成り立つことを示したいのですが。 (I)まずn=1 は 左辺=1・3=3 右辺=3 となり等式は成立する。 (II)ここで、n=kのとき等式が成り立つと仮定すると  とかいて、はじめのnにn=kを代入しますよね。 その後、模範解答を見ると「(k+1)(k+3)を加えると・・・」 としているのですが (k+1)(K+3)を加えている理由としては、 n=kを成立すると仮定して、n=k+1が成り立つ⇒n=kも当然なりたつ⇒すべての自然数nについて与式は成り立つ。 というものなんでしょうか? ということは、例えば右辺が 2n(n+1)などとしたら、 はじめにn=1で成り立つことを示した後、 n=kを代入し 2k(k+1)を成り立つと仮定し、 n=k+1で 2(k+1){(k+1)+1}・・・☆ となるようにうまく右辺を変形させてあげて、 nのところにk+1が代入されている形になっているので、n=k+1のときに成り立つことが示せて、だからn=kのときも成り立ち、すべての自然数nに対して等式が成立する。 という風に考えればいいのでしょうか? つまり、右辺が☆の形でn=k+1で元の式のnにk+1を代入した形を示せれば、左辺はともかく右辺だけでn=k+1が成り立つことを示せているんですよね? つまり問題に戻ると、左辺は1・3+2・4・・・・+(k+1)(k+3)= とでも適当に書いておいて実質無視ということでしょうか? 理系の受験生なのですが、帰納法すらまともに書けないのか・・・ と馬鹿にされそうですが・・・。 質問というか確認のようになってしまいましたが、帰納法というのはどういうものなのか?という理解すらままならない状況だったので質問させていただきました。あと5ヶ月でまともな解答がかけるようになるために間に合うかはわかりませんが、地道に努力します。回答よろしくおねがいします。

  • 数学的帰納法

    nは自然数とする。5^(n+1) + 6^(2n-1) は31で割り切れることを証明せよ。という問題です。 数学的帰納法でとくと・・・ (1)n=1のとき 5^(n+1) + 6^(2n-1) =5^(1+1) + 6^(2-1) =5^2 + 6 =25+6 =31 となり、成り立っている。 (2)n=kのときも成り立っていると仮定すると 5^(k+1) + 6^(2k-1)となり、これは31の倍数である。 よって5^(k+1) + 6^(2k-1)=31Mとあらわすことができる(M:整数) n=k+1のとき 5^(k+1+1) + 6^(2(k+1)-1) =5^(k+2) + 6^(2k+1) ここまではわかりました。 この問題はn=k+1のときも31の倍数であることを証明すればいいのですよね? しかし5^(k+2) + 6^(2k+1)から 31{・・・・}となるように持っていくことができませんでした。 (私の考えが違っていたらすいません。) 解答を見たら(n=k+1のときの前までは解答と同じでした。) n=k+1のとき 5^(k+1+1) + 6^(2(k+1)-1) =5(5^(k+1) + 6^(2k+1)+31・6^2k-1 となっています。 これは31の倍数であるから、n=k+1のときも成り立つ。 (1)(2)より、すべての自然数について命題が成り立つ。 となっていました。 どうやって、5(5^(k+1) + 6^(2k+1)+31・6^2k-1に持っていたのですか? できる限り詳しく教えてください。お願いします。

  • 数学的帰納法について

    すべての自然数 n について  1+3+5+ … +(2n - 1)=n2 …(1) が成り立つことを証明したい. (I) n=1 のとき,左辺=1,右辺=12=1 だから,(1)は成り立つ. (II) n=k のとき,(1)が成り立つと仮定すると 1+3+5+ … +(2k - 1)=k2 …(2) (2)の両辺に 2k+1 を足すと 1+3+5+ … +(2k - 1)+(2k+1)=k2+2k+1=(k+1)2 …(3) (3)はn=k+1 のときも成立することを示している. (I)(II)より,すべての自然数 n について(1)が成り立つ. n=kの時成り立つと仮定すると・・・とあります。 n=k+1 のときも成立することを示している・・・とあります。 確かにそうなのですがn=kは仮定ですよね?仮定したものにさらに1をプラスして成立することを示してどうして証明になるのか?納得できないのです。よろしくお願いします。

  • 数学的帰納法について教えてください。

    こんにちは。いま「nの3乗+2nは3の倍数である」ことを証明したいのですが、 n=kのとき kの3乗+2k=3m と仮定するとき  多くの参考書は mを整数 としているのですが、 mを自然数 としても問題は無いのでしょうか。 気になってしまいました。教えてください。 よろしくお願いします。

  • 数学的帰納法

    nは自然数とする。次の等式が成り立つことを証明せよ。 x^(n+2)+y^(n+2)=(x^(n+1)+y^(n+1))(x+y)-xy(x^n+y^n)・・・(1) n=kのとき 上の等式にkを代入して成り立つと仮定する。(この等式を(2)とする) n=k+1のとき このとき(1)の右辺にn=k+1を代入すればあらわれる(x^(k+2)+y^(k+2))に(2)の右辺を代入するんじゃないか。 ぐらいしか思い浮かばないんですが、なにか策はありますか?