• ベストアンサー
  • 困ってます

ベクトルの表示の仕方

大学で数学を勉強しています。 ベクトル解析を自習していますが、表示を i=(1,0,0)j=(0,1,0) k=(0,0,1)を使って線形表示していますが、直接(x,y,z)って書かないのは何かいいことがあるんでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数83
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • f272
  • ベストアンサー率45% (5089/11305)

成分だけを書いたら,その成分がどのような基底に関する成分なのかが明確にならないでしょ。まあ,実際には文脈でわかるだろうけど,それでも明示的に書いてあるほうがわかりやすい。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。

関連するQ&A

  • 大学院の入試(数学)の勉強について

    大学院の入試(数学)の勉強について  私は今、大学3年生で食品系の学科(生化学が中心)にいるのですが、大学院の独立研究科の物理化学の分野に進学しようと考えています。  そこの入試に出る数学について、どのように勉強するべきか悩んでいます。  大学受験の時は数学II・Bまでしか受けず、大学のカリキュラムでは微分積分、線形代数を少しかじった程度です。どちらかというと数学の知識は疎いです。  入試の出題範囲は線形代数、微分積分学、ベクトル解析、線形常微分方程式、複素積分となっています。  勉強していくにあたって、まずはあやふやな高校数学から始めるべきだと考えております。高校の教科書が理解できれば、大学教養レベルに進んでも問題ないでしょうか?  また数学の勉強にお勧めな書籍があったら教えていただけると助かります。

  • 微分積分、線形台数、ベクトル解析学などについていけない。

    微分積分、線形台数、ベクトル解析学などについていけない。 現在高校3年生で、情報系への進学を考えています。 しかし私が2年のときは専門学校に行くつもりだったので数学III、Cはとっていなかったため 微分積分、線形台数、ベクトル解析学 などの授業がある場所に行くには厳しいかと考えて大学が決まらない状態です。 また、偏差値は英語48 数学35 国語47 と数学が苦手な結果が反映されています。 実際は偏差値40代後半あたりの大学を狙いたいのですが、このままでは40程度の偏差値の無名な大学に推薦で決めてしまいそうです。 現在、第一志望は少しでも名前がある大学を考え、 日本大学を志望しています。 しかし交通の便の問題で福島県にある工学部のキャンパスに行くのは厳しいです。 かといって 情報系で学びたい内容があるのは 数理情報工学科です。 数理情報工学科は名前の通り数学を軸としているので 単位などの問題が不安で頭が痛いです。 授業内容に書いてあったものは 線形空間論 形式論理 カオスと情報処理 システム解析 応用解析学 幾何学 確率統計解析 計算論 離散数学 計算高額 メディア数理 などがあり、数学に苦手意識を持っている人間が単位を取って卒業できるか不安です。 そこで、上記の授業内容は数学3cをとってないと難しいのか。 (厳しい内容でも構いませんので真実を教えてください。) 微分積分、線形台数、ベクトル解析学 ではどこまで数学III、Cの学力どの程度 微分積分、線形台数、ベクトル解析学 は数学III、Cがないとついていけないか。 微分積分は数学IIIの知識。 ベクトル解析学と線形台数は数学Cの知識だと思いますが詳しい部分も教えてください。 よろしくお願いします。

  • 双線形関数は物理学でどこに登場しますか?

    ベクトル解析で双線形関数というものを勉強したのですが、 物理学ではどこの分野にどういう形で使われるのでしょうか? 検索したりなどしてもみましたが、数学のページだけがかかって、具体的な物理への応用について触れられているページが見つかりませんでした。 出来れば、具体的に教えて頂けないでしょうか?

  • エディントンのイプシロン

    ある資格試験の勉強をしていて、エディントンのイプシロン ε_ijk×ε_lmk = δ_il×δ_jm - δ_im×δ_jl が出てきました。 勉強しようとしていますが、数学の中でもどの分野の本に載っているのでしょうか? (線形代数、ベクトル解析・・・?) 教えてください。よろしくお願いいたします。

  • ノートに書く時のベクトルの記号

    ベクトル解析を自習しています。 ベクトルとスカラーでは、同じaという文字を使っても、前者は太文字で教科書には書いていますが、ノートにはどのように書いていますか? 高校生みたいに上に→を書いたりはしないみたいで、皆さんどうされているのかと。 教えてください。

  • ベクトル解析っていったい

    理学部で数学を勉強しています。 将来、微分方程式、できればナビエストークス方程式の研究をしたいと考えています。 物理の知識はほとんどないので、まずは∇やdiv、rotの記号に慣れないと、と思ってベクトル解析の簡単な本で自習しています。 が、ベクトル解析って、結局多変数の微積分の3次元版、と理解したらいいんでしょうか?1年生の微分積分で習ったこと以上のことってないんやないかなあ、と。 認識謝りや、このあとどんな勉強したらいいかなど、教えて欲しいです。 よろしくお願いいたします。

  • 数学科で勉強する手順

    今年4月から数学科に入学する、数学教師を志す者です。 なんせ4月まで時間があるので、この間はやく身につけたいです。 この質問をするまでとりあえず命題論理や述語論理など、大学で学ぶ上で最低限必要な数学言語の本を読みました。 数学にはおおまかに3つに分けられていると言われていますが、実際勉強し始めるとなると、偏微分方程式、常微分方程式、統計学、複素関数、微分積分、線形数学、ベクトル解析などと、本屋に行くとさまざまな分野に分かれているとわかりました。 そこで質問なんですが、どのような順番でこれらを勉強すればよろしいのでしょうか。 例えば私は今IIICの知識しかないのですが、この予備知識から理解できるような手順を教えてください。 例えば (1)微分積分→(2)線形数学→(3)・・・・・ という感じでお願いします。 余裕がありましたらわかりやすいおすすめの本を教えてください。(私は理解力がある方ではありません)

  • 大学数学における計算力をつける方法

    大学数学の基礎的計算力がつけたいです。 ・線形代数、微分積分 ・ベクトル解析 ・複素系いろいろ ・フーリエ解析 などなど。どのような手順・方法で身に付けるのが効率いいと思いますか? 体系的に学びやすい順序とかはありますか? それとも、かたっぱしからやるしかないのでしょうか?

  • 大学の数学の参考書について

    大学の数学の参考書について 大学で使う参考書をどうしようか迷っています 教科書の指定はないので自分に合うものを探してるんですが 色いろあるためここで参考に聞きたいと思って質問してみました 買いたいのは線形代数学と微分積分学とベクトル解析です 自分はあまり数学が得意じゃないのですが 難しくても一読の価値があるようなものも教えてくれたらありがたいです。 ちなみに自分は理学部の物理学科生です 主観的な意見でいいのでよろしくお願いします

  • ヴェクトル解析の目的

    数学を大学で勉強しています。 ベクトル解析の目的は、 ・ガウスの定理 ・ストークスの定理 かな、と思うのですが、この二つがなかなか腑に落ちません。 一体何に使えるのだろう、と思うのですが、応用例も少なく、何に使えるのだろう、と不思議でなりません。 勉強のモチベーションとして、何のために勉強するのでしょうか?