• 締切済み

あれ、なんだか、おかしいです。

オイラーの公式 e^i2π=cos(2π)+isin(2π)=1 よって √(e^i2π)=√1 よって e^(iπ)=1・・・・・(A) 一方で  e^(iπ)=cos(π)+sin(π)=-1・・・・・(B) よって  (A)=(B)   1=-1 どこが間違いでしょうか?

noname#242965
noname#242965

みんなの回答

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

e^{iπ}=1…(A)が間違いです √(e^{i2π})=e^{iπ}ではありません nを任意の整数とする √(e^{i2π})=√(e^{i4nπ})=e^{i2nπ}=1 です

noname#242965
質問者

補足

>オイラーの公式 >e^i2π=cos(2π)+isin(2π)=1 --------------------------------------- と記述しましたが、これが誤りでした。 正しくは e^i2π=cos(2π)+isin(2π)=(±1)^2=1 ・・・・・(A) です。 2π≧θ≧0 にするので、nを任意の整数とするnは不要です。 その結果(A)式より e^iπ=cos(π)+isin(π)=-1となる。

関連するQ&A

  • 間違い?

    オイラーの公式 e^iθ=cosθ+isinθ θ=2πと置く すると e^i2π=cos(2π)+isin(2π)=1となる。 両辺を√を取る。 よって √(e^i2π)=√1 よって e^(i2π)/2 e^(iπ)=√1=1・・・・・(A) 一方で  e^(iπ)=cos(π)+isin(π)=-1・・・・・(B) よって e^(iπ)=-1・・・・・・(B)  (A)=(B) つまり   1=-1 どこが間違いでしょうか?

  • おかしい。

    オイラーの公式 e^iθ=cosθ+isinθ θ=2πと置く すると e^i2π=cos(2π)+isin(2π)=1となる。 両辺を√を取る。 よって √(e^i2π)=√1 よって e^(i2π)/2 e^(iπ)=√1=1・・・・・(A) 一方で θ=πと置く  e^(iπ)=cos(π)+isin(π)=-1・・・・・(B) よって e^(iπ)=-1・・・・・・(B)  (A)=(B) つまり   1=-1 なんだかおかしい?

  • 1=-1 ?

    e^i2π=cos(2π)+isin(2π)=1 よって √(e^i2π)=√1 よって e^(iπ)=1・・・・・(A) 一方で  e^(iπ)=cos(π)+sin(π)=-1・・・・・(B) よって  (A)=(B)   1=-1 どうしてこんなことになったのでしょうか? どこが間違いでしょうか?

  • オイラーの公式について、おいら質問があります。

    e^(2πai)があるとして、aは実数、iは虚数単位とします。 このとき、オイラーの公式により、 e^(2πai)=cos(2πa)+isin(2πa)-----1 ですよね? そして、e^(2πai)=(e^(2πi))^a------2 ですよね? で、a=1/2としたときに、1では、 e^(2πai)=cos(π)+isin(π)=-1 になって、2では、 e^(2πai)=(cos(2π)+isin(2π))^(1/2)=1^(1/2)=1 になるから、1と2で答え違いませんか・・・?どこがおかしいか教えてください!!

  • 特性方程式

    微分方程式で特性方程式を使う問題(y"-y'-y=0)で特性方程式よりλ=±iというのがでてくるのですが、これをオイラーの公式を用いて y=C1cos(x)+C2sin(x)で解が尽くせるとなるのがわかりません。 オイラー公式 e^(ix)=cos(x)+isin(x) e^(-ix)=cos(x)-isin(x)から答えは y=C1{cos(x)+isin(x)}+C2{cos(x)-isin(x)}で尽くせるというのなら納得がいくのですが、どうやって解のようになるのでしょうか?

  • オイラーの公式の変形

    A=cos2π/n + isin2π/n が出てくる問題を解いてるときに式変形してたらおかしなことになったのですが、おかしいところを教えてください オイラーの公式よりe^i(2π/n)=cos2π/n + isin2π/n=A またe^ix=cosx+isinx (e^ix)^n=cos(nx)+isin(nx) x=2π/nを代入 (e^i(2π/n))^n=cos2π+isin2π=1 A^n=1 A=1 となっちゃったのですが冷静にn=4とかだとA=iになるのでおかしいのですがどこで間違えたのかよくわかりません。 根本的におかしいのでしょうか 回答よろしくお願いします

  • 複素関数の積分

    ζ(t)を実数変数tの複素関数とする。 ∫[a→b] ζ(t)dtは複素数となるので、 ∫[a→b] ζ(t)dt = | ∫[a→b] ζ(t)dt |*e^(iθ)と変形することができる。 この式の両辺にe^(-iθ)を掛けて、ζ(t)=|ζ(t)|*e^(iφ)とおくと、 右辺=| ∫[a→b] ζ(t)dt |, 左辺=e^(-iθ) ∫[a→b] ζ(t)dt=∫[a→b] e^{i(φ-θ)} |ζ(t)| dtとなる。 右辺| ∫[a→b] ζ(t)dt |については、複素数∫[a→b] ζ(t)dt の絶対値をとっているので実数になる。 この左辺のe^{i(φ-θ)} についてオイラーの公式より、e^{i(φ-θ)} =cos(φ-θ)+isin(φ-θ)となるが、右辺| ∫[a→b] ζ(t)dt |が実数となるので、isin(φ-θ)の項は消える。 したがって、| ∫[a→b] ζ(t)dt |=∫[a→b] cos(φ-θ) |ζ(t)| dtとなり、cos(φ-θ)≦1であることから、 | ∫[a→b] ζ(t)dt |=∫[a→b] cos(φ-θ) |ζ(t)| dt≦∫[a→b] |ζ(t)| dt、| ∫[a→b] ζ(t)dt |≦∫[a→b] |ζ(t)| dtが導ける。 ※質問です。『この左辺のe^{i(φ-θ)} についてオイラーの公式より、e^{i(φ-θ)} =cos(φ-θ)+isin(φ-θ)となるが、右辺が実数となるので、isin(φ-θ)の項は消える。』というところで、isin(φ-θ)が消えるということは、sin(φ-θ)=0になると思うのですが、この考え方は正しいのでしょうか? そうなると(φ-θ)は..,-π,0,π,2π..に限定され、cos(φ-θ)の値も同様にcos(2nπ)=1、あるいはcos(2n-1)π= -1 [n=整数]の2つに絞られるはずです。そして、| ∫[a→b] ζ(t)dt |=∫[a→b] cos(φ-θ) |ζ(t)| dtの式は、 | ∫[a→b] ζ(t)dt |=∫[a→b] |ζ(t)| dt [(φ-θ)=2nπ] | ∫[a→b] ζ(t)dt |= (-1)* ∫[a→b] |ζ(t)| dt [(φ-θ)=(2n-1)π] の2組以外には考えられないはずですので、なぜcos(φ-θ)≦1であることを持ち出し、 | ∫[a→b] ζ(t)dt |=∫[a→b] cos(φ-θ) |ζ(t)| dt≦∫[a→b] |ζ(t)| dtと変形しているのかが分かりません。 詳しい方教えてください。 お願いします。

  • オイラーの公式の導き方

    オイラーの公式 e^(iθ)=cosθ+isinθ を導く方法で、マクローリン展開を使う方法は知っているんですけど、他にどのような方法があるでしょうか?

  • 複素数の絶対値、偏角についての質問です

    複素数の絶対値、偏角についての質問です 次の複素数の偏角、絶対値を求める問題についてなのですが、 両問ともに途中までしか分からず行き詰っている状態です。 考え方の回答よろしくお願いします。 (1){e^(2+3i)} / (1-i) {e^(2+3i)} / (1-i) = a+bi とする。 {e^(2+3i)} = (1-i)(a+bi) = (a + b) + i(b - a) e^2(cos3 + isin3) = (a + b) + i(b - a) a + b = e^2 * cos3 -a + b = e^2 * sin3 a = e^2{cos3 - sin3} / 2 ? b = e^2{cos3 + sin3} / 2 ? (2)sini + ie^(i+πi) sini + ie^(i+πi) = sini + i(e^i)(e^πi) = sini + i(e^i)(cosπ + isinπ) = sini - i(e^i)

  • オイラーの公式

    オイラーの公式 exp[iθ]=cosθ-isinθなのに、 なんでexp[iωt]=sin(ωt)と書けるんでしょうか? 知らず知らずのうちに電気回路で使っていましたがなんでですか? 電気回路ではωtを使うのでθをωtにしました。