• ベストアンサー
  • 困ってます

等比数列の計算に関する質問です。

以下の等比数列の問題について質問です。 次の等比数列の一般項anをnの式で表しなさい。 3,1,1/3,... 初項 a=3 項比 r=1/3 よって、等比数列の公式(an=a*r^n-1)より、 an=3*(1/3)^n-1 =3/3^n-1 =1/3^n-2 以上が問題と解答になります。 この問題については、等比数列の公式を用いて最初の式を立てるところまでは自力で出来るのですが、 3*(1/3)^n-1 → 3/3^n-1 → 1/3^n-2 という途中式の計算がどうしても分かりません。 3*(1/3)^n-1 を計算すると (1/1)^n-1 → 1^n-1になると思うのですが、解答では 3/3^n-1 になるとされています。 また、^n-1 が ^n-2 に変化する理由も理解できません。 初歩的な計算の質問で恐縮ですが、解答いただければ幸いです。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数112
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

多分,判らないのではなく,ちょっとした錯覚を起こしているだけだと思います。 例えば,3/3^5なら,分子分母を3で約分して,分母の3が一つ減り,1/3^4となりますね。 つまり3/(3*3*3*3*3)=1/(3*3*3*3) これと同じです,分母の3が一つ減って,3/3^(n-1)=1/3^(n-2)となるのです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

分かり易く回答していただきありがとうございます。 本当に助かりました。

関連するQ&A

  • 等比数列に関する質問です。

    等比数列に関する質問です。 初項から第四項までの話が130の数列{An}を考える。 ただし数列{An}の項はすべて実数とする。 数列{An}が初項16の等比数列であるとき公比を求めよ。 この問題が全くわかりません。どなたか答えと、その答えを求めるまでの式を教えてくださ ると幸いです。

  • 等比数列

    【問題】 初項が2,公比が3である等比数列において,はじめて200により大きくなるのは第何項か。 まず,一般項を出すと… an=2×3^n-1 200より大きくなるから… 2×3^n-1>200 3^n-1>100 ここまではわかります。 次に… n-1≧5 n≧6 となります。 どうして,n-1≧5の式が出てくるのかわからないので教えて下さい。

  • 等比数列の問題です。

    等比数列の問題です。 1.次の等比数列{an}の一般項を求めなさい。 (1) 初項-1 公比-2 (2)初項-3, 公比-3 (3) 第3項 1, 第5項 1/4 

  • 数学Bの等比数列の問題

    数学Bの等比数列の問題でわからないところがあります 第3項が-8、第6項が64である等比数列の一般項anを求めよ。また、1024は第何項か。 という問題で、一般項は求められて、an=-2×(-2)のn-1乗になったのですが、 1024が何項なのかが全然わかりません。 解答解説には、第10項と書いてありました。 だけど説明が足りなくて、意味がわかりません。 an=-2×(-2)のn-1乗=(-2)のn乗 (-2)のn乗=1024 n=10 と書いてあったのですが、 どういった経過で -2×(-2)のn-1乗=(-2)のn乗になったのか。 そして (-2)のn乗=1024がどういった経過でn=10になったのか。 回答お願いします!

  • 数学の等比数列を教えて下さい

    閲覧ありがとうございます!! 数学の等比数列の問題がわからず、 質問させていただきます。 ○初項3,第4項が81の等比数列anの公比と一般項を求めよ。 という問題です よろしくお願い致します。

  • 等比数列

    第10項が1/16、第15項が2となる等比数列{an}で、第何項が初めて100を超えるか。 初項a、公比rとして、題意より ar^9=1/16・・・(1) ar^14=2・・・・(2) (2)÷(1)より r^5=32 rは実数より r=2 (2)に代入して a・2^14=2 a=1/2^13 したがって一般項は an=2^-13・2^n-1 …という感じで解こうとしてみたのですが ここまではこれでいいのでしょうか?? また、この後はどのようにしたら解けるのかも含めてお答え頂けると助かります!! 一般項>100 という形にしたりもしたのですが、 計算が進まず困っています。 よろしくお願いします。

  • 等比数列

    ある数列の和の第n項までの和をSnとするとき、数列S1,S2・・・Snが等比数列をなすという。はじめの数列は等比数列といえるか。という問題なのですが、はじめの数列を{an}とすればa1=S1=a n≧2のとき an=ar^(n-1)-ar^(n-2)=ar^n-2(r-1) まではわかりますが、この先どのように証明していけばよいのか分かりません。 等比数列だからan=ar^(n-1)の形にもっていかなければいけないと思うのですがどのようにもっていけばよいのでしょうか?ご教示をお願いいたします。

  • 等比数列の質問です

    等比数列の質問です。 {an}の初項からn項までの和をSnとすると S3=9 S6=-63のとき、一般項anを求める問題で、 S3=a(r^3-1)/r-1=9 S6=a(r^6-1)/r-1=-63 ここまではわかります。 このさきがわかりません。 かんたんですが、この先どう進むかを教えてください。 余おろしくお願いします。

  • 第3項が4で第6項が-8√2である等比数列

    第3項が4で第6項が-8√2である等比数列の一般項の求め方と初項から第10項までの和の求め方を教えてください 答えは順に 2・(-√2)^(n-1), -62{(√2)-1}です

  • 等比数列の和

    初項=2、公比=1/√2 の等比数列の和は S=[2{1-(1/√2)^n}]/{1-(1/√2)} となりますよね。 ここから何処まで式を簡単にすればいいんでしょうか? 解答例をおしえていただけますか?