• 締切済み

2等辺三角形に内接する円の面積と底辺

178-tallの回答

  • 178-tall
  • ベストアンサー率43% (762/1732)
回答No.3

>底辺1高さrの3角形の面積r/2で、△ABC = r+x(r/2)だと思います。 当方の錯誤でした。 内接円の半径をr、底辺の長さをx(x>0)として、∠B=∠C=θ(0<θ<π/2)とおくと、3角形ABCの面積は2通りにあらわせ、 △ABC=(1/2)*(1+1+x)*r, △ABC=(1/2)*1*x*sinθ この2つからr=(x*sinθ)/(x+2) △ABC = r+x(r/2) = r*{1+(x/2)} = r*(1+cosθ) △ABC = sinθ*cos(θ)    ↓ 等置 r = r(θ) = sinθ*cosθ/(1+cosθ)  ↓ r'(θ) = [ {cos^2(θ)-sin^2(θ)}*(1+cosθ) + sin^2(θ)*cos(θ) ] / (1+cosθ)^2 = [ {cos^2(θ)-sin^2(θ)} + cos^3(θ) ]/(1+cosθ)^2   ↓ 分子 = {cos^2(θ)-sin^2(θ)} + cos^3(θ) = {2cos^2(θ)-1) + cos^3(θ) ] u=cos(θ) とおくと、   ↓ r'(θ) の零点 u^3+2u^2-1=0 u=0.618034 2u=1.236068   

situmonn9876
質問者

お礼

お返事くださり、ありがとうございます。

関連するQ&A

  • 半径r(定数)の円に内接する三角形の面積の最大化です。

    半径r(定数)の円に内接する三角形の面積の最大化です。 説明が十分かどうか自身がもてません…orz 底辺を定めると高さが最大の時に面積が最大となるので、内接三角形の頂点は底辺の中心にあり、二等辺三角形になる。円の中心を内側に含む内接三角形を考える。 中心から底辺までの長さをx(0=<x<r)として、高さはx+rで表される。 さらに、中心から底辺の一端に補助線を引くと高さx、斜辺rの直角三角形ができる。 三平方からこの三角形の底辺は√(r^2-x^2)であり、これを2倍すると内接三角形の底辺=2√(r^2-x^2)となる。 ∴S=(x+r)2√(r^2-x^2) , S>0…(1) の極値について考える。s>0よりSが最大⇔S^2が最大なので、 s^2= f(x)について考察する。 f(x)=(x+r)^2 (r^2-x^2)=(x+r)^3(x-r) f'(x)=3(r+x)^2-(x+r)^3=2(r+x^2)(r-2x) ∴実数の範囲ではx=r/2 の時、極値を取る。 f''(x)=4(r(x-1)-3x^2) f''(r/2)=-r(r+4)<0 , (r>0) なので極大である。 以上よりx=r/2でS^2は最大値であり、又Sも最大値である。 (1)に代入して、S=(3√3/4)r^2である。 という感じで不備はないでしょうか? 宜しくご指導願います。

  • 円に内接する二等辺三角形

    円に内接する二等辺三角形において、頂点から底辺に垂線を下ろすと、この垂線が円の中心Oを通り、また底辺を二等分するのはなぜですか?

  • 内接三角形の面積

    円に内接している三角形の面積の求め方について教えてほしいです。 円に内接している三角形をABCとおき、円の中心OからBCに垂線をおろし、 その交点をH、距離をt、そして半径をrとする。 このとき、三角形の面積は1/2×2√(r^2-t^2)×(r+t)でいいのでしょうか? (r+t)についてどのような三角形のときにも応用できるかどうかが いまいちよくわからないので教えてほしいです。よろしくお願いします。

  • 円に内接する三角形の面積が最大のときの三角形の形の証明

    【問題】 平面上の点Oを中心とし半径1の円周上に相異なる3点A、B、Cがある。 三角形ABCの内接円の半径rは1/2以下であることを示せ。 rが最大のときは円の面積が最大。そのときの三角形ABCは正三角形だと 予想できるのですが、証明の仕方がわかりません。 わかる方教えてください。お願いします。

  • 円に内接した三角形の面積

    半径√2 の円に3角形ABCが内接しており、∠BAC=90°です。 3角形ABCの面積をSとするとき、Sのとりうる値の範囲を求めなさい。 三平方の定理を使うのでしょうか?・・・

  • 二等辺三角形の面積が最大化されるときの角度について

    二等辺三角形の面積が最大化されるときの角度を求める問題についての質問です。 以下(1)~(5)のように考えると底辺が45度の時に最大化されるようですが何か大きな勘違いしているようですのでアドバイスいただけると助かります。 三角形ABCとしてAB=AC=x、角ABC=ACB=y(0=<y=<90度)の二等辺三角形を考え、xを固定してyが動くときこの面積の最大化を考えたいのですがこの際に、 (1)BCの中点Mをとり三角形ABMの面積の最大化を求めてもよいように思います。 ABMの面積Sを最大になるときのyの条件を考えると、 (2)ABMは直角三角形ですからAM=x*siny、BM=x*cosyより、S=1/2*x^2*siny*cosy  (3)x>0より結局 sinyx*cosy の最大化を求めればよく、 (4)sinyx*cosy=1/2*sin2yより0=<y=<90度ではsin2y=1となるときが最大、 (5)つまり2y=90度、y=45度のときにSが最大となり、この際に三角形ABCも最大化になるような気がします。

  • 円に内接している四角形の面積の最大について

    ↓の質問を前回させてもらったのですが、理解出来ないところがありました http://okwave.jp/qa/q7366362.html 質問の点については、 具体的な 120゜や 60゜の値に結びつけて考える必要は無いです。 △ABC が固定され、D は △ABC の外接円周上にあるので、 △DAC の面積が最大になるのは、D の AC に対する高さが最大になるとき、 つまり、DA=DC の二等辺三角形のときです。 二等辺三角形の頂角から底辺におろした垂線の足は、底辺の中点ですね。 ほら、「条件は垂直二分線」だったでしょう? という回答を頂いたのですが下がいまいち理解できません 「△DAC の面積が最大になるのは、D の AC に対する高さが最大になるとき、 つまり、DA=DC の二等辺三角形のときです。」 なぜACの高さが最大になることと、DA=DCになることがつながるのですか?

  • 円に内接する四角形

    円に内接する四角形ABCDにおいて、AB = 13 , BC = 14 , CD = 4 , DA = 13 とする。 ( 1 ) 線分ACの長さを求めよ。 AC = 15 ( 2 ) sin ∠ ABC の値を求めよ。 sin ∠ ABC = 12/13 ( 3 ) 四角形ABCDの面積を求めよ。 S = 108 ( 4 ) 線分AC と線分 BD の交点をEとする。AEの長さを求めよ。 △ ABC と △ CBD は BD を底辺とすると底辺共通なのでその面積比は高さの比となる AE : EC = △ ABD : △ CBD = 1/2 ・13・13・sin∠ BAD : 1/2 ・14・14・sin ∠BCD = 13・13 : 14・4 = 169 : 56 よって AE = AC × 169 / ( 169 + 56 ) = 15 × 169 / 225 = 169 / 15 ( 4 )の「△ ABC と △ CBD は BD を底辺とすると底辺共通なのでその面積比は高さの比となる 」 はわかるんですが 「 AE : EC = △ ABD : △ CBD 」の、なぜ AE : EC = 面積比 になるんですか? というか、なぜ AE : EC = 高さの比 になるんですか?

  • (1)円に内接する三角形の内面積最大となるものを求めよ。

    (解答) 半径1の円の中心Oから円周へ3本の線を引くとする。 円周と各々の線の交点(A,B,C)を頂点とする三角形の面積は △ABC=△OAB+△OBC+△OCA である。 ∠AOB、∠BOC、∠COAをそれぞれα、β、γとすれば 当然α+β+γ=2πである。 さて、△ABCの面積Sは公式より S=1/2 ×(sinα+sinβ+sinγ) である。 ここでsinα+sinβ+sinγを最大のとき三角形の面積は最大になる。 γ=2π-(α+β) なので、上式からγを消去すると f'=sinα+sinβ+sinγ =sinα+sinβ+sin(2π-(α+β)) =sinα+sinβ+cos(α+β)-sin(α+β) ここでβを固定してαのみの関数と考え、αについて微分すると f'=cosα-sin(α+β)-cos(α+β)  =cosα-{sin(α+β)+cos(α+β)}=0 cosα=sin(α+β)+cos(α+β) =sinαcosβ+cosαsinβ+cosαcosβ-sinαsinβ したがってα=β よって面積が最大となるのは、α=β=γのとき、 すなわち△ABCが正三角形のときである。 上のように解いたのですが、説明は十分でしょうか? 助言をお願い致します。

  • 三角関数 内接三角形の周

    ・半径aの円に内接する二等辺三角形のうち、二等辺の挟角が2xであるような三角形の周が最大になる三角形がどのような三角形か求めよ という問題があります。 周長を2a(2cosx + sin2x)という形まで崩しましたが、この後この式の最大値が求められません。 (微分してもうまく増減表が書ける形に直せなかったので、微分後の計算方法を教えて下さい。) cosxの二次関数に直そうともしてみましたが、どこかで計算ミスをしたのか、周の値は一致しますが、xの範囲がおかしくなったので諦めました。