• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:ボールエンドミルのたわみ量算出に関して)

ボールエンドミルの先端たわみ量を求める方法とは?

このQ&Aのポイント
  • ボールエンドミルの切削加工時の先端たわみ量を求める方法についてご紹介します。
  • 先端が球状のボールエンドミルの場合、途中で断面2次モーメントが変化するため、解析が難しいです。
  • 工具がフラットエンドミルであれば、先端でのたわみ量を簡単に求めることができます。

質問者が選んだベストアンサー

  • ベストアンサー
noname#230359
noname#230359
回答No.2

CEのユーザーさんが仰るように、小生もフラットで近似すればよいとは思いますが、ここはあえて貴殿の御要求に沿うように検討してみました。       F       ↓ □□□□□□D ← L  →| x←|(先端を原点とする) 工具径:d とした場合、断面円の直径をD、断面2次モーメントをIとすれば、 (a)0≦x≦d/2の時、D=2√{x(d-x)} , I=πD^4/64 (b)d/2≦x≦Lの時、D=d , I=πd^4/64 また、モーメントM = -Fxです。(下に凸を正) ここで、ひずみエネルギーUを計算すると、(a)(b)で積分範囲を分けて、 U=∫{M^2/(2EI)}dx = {2・F^2/(πEd)}×{16(L/d)^3 - 1} ・・・(1) ここで、材料力学のカスティリアノの定理より、先端でのたわみδは、 δ=∂U/∂F = {4・F/(πEd)}×{16(L/d)^3 - 1} ・・・(2) (2)から求めるたわみが算出でき、更に、円筒断面のたわみよりも小さくなることがわかります。(円筒断面:δ=64・FL^3/(πEd^4)) 以上、御参考まで。 確かに、再計算してみたところ、貴殿の通りとなりました。 急いで計算した結果です。お恥ずかしながら。 恐らく、小生のアイデアで検討できると考えますので、是非検証願いたいと思います。

noname#230358
質問者

お礼

ご意見、誠に有難う御座います。 miwaさんの計算過程をこちらでも検算したのですが、計算結果がずれていたので、ご報告をします。 私の計算結果ですと、ひずみエネルギーUは、 U = {(2・F^2)/(3Eπd)}×{16(L/d)^3 + 1} となり、たわみ量δは、 δ = {(4F)/(3Eπd)}×{16(L/d)^3 + 1} という結果を得ました。 何にせよ、計算過程の道筋を示して頂き、誠に有難う御座います。

その他の回答 (1)

noname#230359
noname#230359
回答No.1

フラットエンドミルで近似していいんではないですか? そもそもボールエンドでは負荷(切削抗力自体正確にだせないでしょう!

noname#230358
質問者

お礼

ご意見、誠に有難う御座います。 確かに、ボールエンドミルの切削力は完全に再現できませんが、近似的な切削力は算出致しました。 察しの通り、現状ではフラットで近似していますが、もう少し精度の良い結果を得たいので、今回質問を行った次第です。

関連するQ&A

専門家に質問してみよう