• ベストアンサー
  • 暇なときにでも

Excel での母分散推定について

 母平均 169.6、母分散 66.5 の正規母集団 1000 個のデータから無作為抽出した 20 個の標本の標本分散(不偏分散)s^2 は 64.2 だった。  いま、母分散σ2は未知であるとして、σ2 の信頼区間を信頼度95%で推定する。  自由度 19 のカイ二乗分布両側 0.05% 点を k1、k2 とすると   k1 = CHIINV(1-0.05/2,19) ≒ 8.91(下側)   k2 = CHIINV(0.05/2,19)  ≒ 32.85(上側) であるから   (19*64.2)/32.85 ≦σ^2 ≦ (19*64.2)/8.91   19*64.2/32.85 ≒ 37.13   19*64.2/8.91 ≒ 136.90   ∴37.13≦σ^2≦136.90  確かに母分散 66.5 はこの範囲に入っていますが、感覚的にはずいぶんアバウトに感じます。こんなものなのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数139
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • f272
  • ベストアンサー率45% (5185/11481)

こんなものです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お礼が遅れました。こんなものなんですね(^O^)。

関連するQ&A

  • 統計学(母平均差の推定)

    母平均の推定なら分かるのですが、母平均差の推定というのがよくわかりません。 以下の問題の解き方をどなたか教えていただけないでしょうか。 問)2つの機械A,Bで同種の製品を作っている。A、Bの製品からそれぞれお無作為抽出した100個の標本について性能を調べたら、Aの製品は標本平均1910、不偏分散105^2、Bの製品は標本平均1850、不偏分散120^2であった。両製品の性能の母平均差を信頼度95%で推定せよ。 ※ちなみに私はAとBの母平均の95%信頼区間をだして大きいほうから小さいほうを引くというバカなやり方をしてしまいました…。 最近、推定と検定の違いがどんどん分からなくなってきています…。やはり独学ではなく、大学に通いたいなと思う今日この頃です。

  • 二項母集団の母比率の区間推定

    ベルヌーイ分布Bi(1,p)に従う母集団からn個の標本を得て、標本和がkとなるとき(あるいは二項分布Bi(n,p)に従う二項母集団から標本X=kを得たとき)の母比率pの精密法による区間推定を考えたいのですが、信頼度100(1-ε)の区間推定において、 下側信頼限界n_2/{n_1F_{n_2}^{n_1}(ε/2)+n_2}、 上側信頼限界m_1F_{m_2}^{m_1}(ε/2)/{m_1F_{m_2}^{m_1}(ε/2)+m_2} で与えられるそうです。ただしF_i^j(ε)は自由度(j,i)のF分布の上側ε点で、n_1=2(n-k+1)、n_2=2(n-k)、m_1=2(k+1)、m_2=2(n-k)です。 なぜF分布により推定できるのかが知りたいです。よろしくお願いします。

  • ベーシック演習

    問題: ある正規母集団から大きさ10の標本を無作為抽出したところ、不備分散の実現値が3.491であった。母分散σ2乗の95%信頼区間を求めよ。答え 1.65から17.6 の考え方を教えて下さい

  • 不偏分散の分母の n-1

    標本平均 Xav を求める式、  Xav = 1/nΣxi を不偏分散で用いるため自由度が1減り、不偏分散の分母が n-1 になると思います。 母平均は標本から求めるものではなく(それは標本平均になる)、既知であることが前提であるため上式は不要であり、 標本分散では自由度が減らず分母が n-1 ではなく n になる。 この考えは間違っていないでしょうか? もし間違っていないとすると、母平均は事前にわかっているものなのでしょうか? 例えば、母集団をクラス40人のテストの点数とすると(これは母集団と言わない?)、上式より母平均(?)を求めることができます。 母平均が40個のデータに独立でないため、分散の自由度は1減らす必要がある気がします。 これは結局不偏分散を求めているのでしょうか?

  • 区間推定に使うt値

    ある母集団から10個の標本を抜取って、 標本の平均μと不偏分散σ^2、標本標準偏差σ/√10を求めました。 次に母集団の平均の区間推定を行います。 99%の信頼度で区間推定した場合、ある参考書に、 区間= μ ± t × σ/√10 と記されていました。 このtという値は信頼度とサンプル数(自由度)によって変化するとのことなので、 t分布表から選択して計算するようにと書いてあります。 自分は エクセルのNorminv(0.005,μ,σ/√10)~Norminv(0.995,μ,σ/√10) を使って求めたほうが簡単なので、こちらを使用するのですが、 上の参考書の値と異なってしまいます。 エクセルのNorminv関数にはなにか欠点があるのでしょうか? よろしくお願いいたします。 データ添付します。

  • X,Yは無作為標本で母平均をμ、母分散をσ^2(シグマの2乗)とする。

    X,Yは無作為標本で母平均をμ、母分散をσ^2(シグマの2乗)とする。 aX+bYがμの不偏推定量で、その分散を最小にするa,b の値を求めよ という問題が分かりません。 私なりに考えてみたものの、 正規母集団からの標本分布がN(aX+bY,σ^2/2)になることしか分かりません。あってますか?? どなたか分かりやすく教えて下さい。

  • 標本分散が母分散より少し小さくなる理由、不偏分散をn-1でわる理由

    お世話になっております。 統計学初心者で、母平均の信頼区間の推定について勉強しています。 勉強している中で、標本分散が母分散より少し小さくなるということ、 そのため標本分散ではなく不偏分散を利用し、不偏分散の算出は偏差平方和、サンプルサイズから1引いたもので割ることを勉強しました。 しかし標本分散が母分散より少し小さくなる理由、そして、そのために不偏分散の算出においてn-1でわる理由が分かりませんでした。 わかりやすい形で教えて頂けないでしょうか? どうぞよろしくお願い申し上げます。

  • 「標本平均の分散」についての質問です.

    「標本平均の分散」についての質問です. 「母集団からn個のデータを無作為抽出する.すると,サンプルサイズnの標本ができ,標本平均が計算できる.これを,標本平均1としよう.この作業を何度も繰り返し,標本平均2,標本平均3・・・と,多数の標本平均を集める.これらの標本平均の分散は,母分散のn分の1(母分散/n)である」という説明をある本で読みました. では,極端な話,1000個のデータからなる母集団(有限母集団)から,サンプルサイズ1000個(母集団サイズと同じ)の標本をいくつも作ったとします.標本平均は,いつも母平均そのものであり,よって,標本平均の分散は0です.母分散/1000とはなりません. 上記の説明が間違っているのでしょうか?私が何か勘違いをしているのでしょうか?それとも,説明は無限母集団を対象としている,とか,母集団サイズとサンプルサイズが一致するような抽出は想定されていない,と言った理由があるのでしょうか?

  • 統計学の母平均の信頼区間

    母平均の信頼区間を求めるとき、母分散が分かれば母平均を求められますが、母分散が未知で標本の値や標準偏差も与えられていない場合、母平均の信頼区間を求めることは出来ますか? 例えば、無作為に25人を選び、1日の睡眠時間を聞いたら平均7時間だった。この母平均の信頼区間を信頼度95%で求めよ。 「母標準偏差は1時間であることが分かっている」などという条件がない、このような問題は求められますか? よろしくお願いします。

  • 社会統計について質問です。

    友人に社会統計学について、質問を受けました。 私は心理学科なので、心理統計しか分からず、困っています。 どなたか助けてください。 以下のような問題です。 体重に関して正規分布N(μ,σ二乗)に従う母集団から、無作為抽出によって以下の16の標本を得た。 62,50,60,48,62,59,36,64,64,62,87,63,75,27,65,76 (1)標本平均、不偏標本分散、不偏標本標準偏差を求めよ。 (2)母平均の最尤推定値(最尤推定量の実現値)を求めよ。 (3)母分散は既知とする。このとき標本平均の標本分布はどのような分布に従うか。「確立変数~確率分布」という形式で答えよ。 (4)母分散は未知であるとする。このとき、母平均の95%信頼区間を求めよ。 (5)母平均は未知であるとする。帰無仮説をHo:μ=52としたとき、適切な検定統計量を求め、5%水準両側検定、1%水準両側検定、5%水準右片側検定、1% 水準右片側検定をそれぞれ実施せよ。 (7)さらに、体重に関して正規分布する別の母集団から、無作為抽出して以下の16の標本を得た。2つの母集団の母分散は未知であるが、母分散は同じであると仮定して良い。「2つの母平均は等しい」を帰無仮説として、母平均の差に関する5%水準両側検定を実施せよ。(ヒント:t0.025(30)=2.042) 65,60,57,76,79,72,57,75,54,75,42,77,38,48,71,78 よろしくお願いします。