• ベストアンサー
  • 困ってます

弾性エネルギーと変位・外力の関係

材料力学、構造力学という学問分野で力のつり合いだけでなく、外力による弾性変形まで考慮する場合、最小仕事とかカスティリアーノの定理などを使います。 弾性エネルギーを変位で微分すると力、力で微分すると変位となるようです。 簡単に言うと、ばねであり、F=E×L, U=E×L^2/2 → U = F×L/2 となります。U:弾性エネルギー、F:力、L:変位、E:バネ定数です。 そこで、UをFで微分すると、L/2, UをLで微分するとF/2 となり、2の割り算が残ります。これと冒頭の最小仕事等の原理とちょっと違うことになります。 これはどのように説明されるのでしょうか。あるいは私の思い違いとか。例えば、ばねには両端の2点があるからとかですが。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数147
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

 U=U(L)=1/2×EL^2をLで微分すると、   dU/DL=1/2×2×EL=EL=F です。  UをFで微分する場合は、U=U(F,L)ではなくて、U=U(F)にしないと駄目ですよ。F=ELより、L=F/E ⇒ U=1/2×EL^2=1/2×F^2/E=U(F)   dU/dF=1/2×2×F/E=F/E=L

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 弾性エネルギ

    材料力学を学んでいる初心者です。よろしくお願いします。 直径10?、長さ1mのバネ鋼が50kNの引っ張り荷重を受けています。このバネ鋼に蓄えられている弾性エネルギを教えてください。 バネ鋼の弾性係数をE=206GPaとする。 上記問題の、引張応力σと弾性エネルギUを教えてください。 なにぶん初心者ですのでよろしくお願いします。

  • ばねの仕事と弾性エネルギーの関係について

    ・ばねを伸ばす(縮める)のにした仕事=ばねの弾性エネルギーの増加分 ・ばねが外にした仕事=弾性エネルギーの減少分 というのを習ったのですが、これでつまづいてしまいました。 問 ばねの先端に質量mのおもりPを取り付け、他端を天井に取り付け、全体を吊り下げて静止させた。重力加速度の大きさをg、ばね定数をkとする。 この状態からPに下向きの力を加え、ゆっくり距離aだけ引き下げ、ここで手でおさえておく。この間のばねの弾性エネルギーの増加量をUとする。 このときPに下向きに加えた力が物体Pの下方の変位の間にした仕事をWとすると、Wはいくらか? 正解 W=-mga+U とあったんですが、なぜ上で書いたようにいかないのでしょうか?実際に力学的エネルギー保存でやるとこうなるのはわかったのですが、「仕事=弾性エネの増加」という関係にたどりつかないのがわかりません。結果から見て位置エネルギー(-mgaという)が入ってるわけですから、上で書いたことは必ずしも成り立たないということでしょうか?アドバイスよろしくおねがいします。

  • ばねによる弾性エネルギーと力学的エネルギー。

    上端を固定したばねに、質量mのおもりをつけた。おもりを自然長の位置から静かに下げていくと、のびがaのときにつり合った。重力加速度の大きさをg、重力による位置エネルギーの基準点を自然長の位置とする。 (1)つり合いの位置での力学的エネルギーをaを使って表せ。 (2)再び自然長の位置までおもりを持ち上げ、そこで急に手を離したところ、 おもりはつりあいの位置を中心に上下に単振動をした。つりあいの位置でもおもりの速さを求めよ。 (3)ばねの最大の伸びはいくらか。 まず(2)から質問。回答では自然長とつりあいの位置で、力学的エネルギー保存の法則を使って mg×0 + 1/2m×0^2 + 1/2k×0^2 = mg(-a) + 1/2mv^2 + 1/2ka^2 となっていました。 この右辺は簡単に理解できます。つりあいの位置での全力学的エネルギーです。 しかし左辺、これは自然長つまりばねに物体を取り付けてない、図で言う一番左の状態の全力学的エネルギーですよね? 右辺は物体を付けた状態の時のエネルギーなのに、左辺はそもそも物体を付けてない時の状態の力学的ねるぎーです(とはいっても0ですが。) これが解答である以上私が間違っているのですが、おかしいと思います。 つまり、力学的エネルギーの総量が一番左の図とつりあいの図では違うから、力学的エネルギー保存則が使えないと思ったのです。 それに、つりあいの位置での力学的エネルギーの総量が=0 なんてこれも理解しづらい。 物体もついているから負の位置エネルギーもあるだろうし、ばねの弾性力もあると思います。 なのに0と等しいなんてわかりません。 次、(3)の問題です。回答では ばねの最大の伸びをXとすると、最大の伸びのとき速さは0だから(わかる。) mg×0 + 1/2m×0^2 + 1/2k×0^2 = mg(-X) + 1/2m×0^2 +1/2kX^2 右辺はわかります。最大の伸びのときの全力学的エネルギーです。 しかしこれまた、左辺が自然長のときの全力学的エネルギーです(0ですが)。 (2)と同じで、自然長の時は物体を付けていないから、弾性力のエネルギーも、位置エネルギーもないので、このときと最大の伸びのときの力学的エネルギーが等しいなんて思えません。 (状況が違うから。) 最後になりましたが、長々としたのはかなり自分も考えましたが、分からない部分がはっきりつかめないので、しつこく書いてみました。 解決して次の問題に行きたいと思っていますので、物理に自身のある方、この問題が分かる方 誰か教えてくれる方はおられませんか。 よろしくお願いします。

  • 物理 弾性エネルギー

    弾性エネルギーの問題です。 全く分からなくて困ってます。 (1)~(7)に当てはまるように書く問題です。 図(a)のように,自然長 l ,ばね定数 k のばねをつけた質量 m の物体を,地上より高さ h から自由落下させた。地面に落下したとき,この物体がばねを通して地面から受ける最大衝撃力の大きさ F を求めたい。ただし,重力加速度の大きさを g とする。物体の大きさとばねの質量は無視するものとする。  ばねの先端が着地した瞬間での運動エネルギーは,エネルギーの保存則から位置エネルギーの差 (1) に等しい。  ばねが,その自然長 l から x だけ押し縮められたとき,物体は一瞬静止した。この瞬間,物体はばねから最も強い力 F= (2) を受ける。この F を決めるには,ばねの縮み x を求めなければならない。  ばねが x だけ押し縮められたとき,物体は,重力による位置エネルギー (3) の他に,ばねの弾性力による位置エネルギー (4) をもっている。このときの物体の全エネルギーは,エネルギーの保存則から,ばねの先端が接地した瞬間に物体がもつ全エネルギー (5) に等しい。  以上の考察と簡単な計算により,最大衝撃力 F は次の形に書くことができる。       F=mg(1+ (6) ) h=l のとき,すなわち図(b)のようにばねを接地して静かに物体をはなしたとき,物体がばねから受ける最大の力 F は, mg の (7) 倍である。 (1)はmg(H-h)でいいとおもいますが それ以降がわかりません。 お願いします。

  • 弾性エネルギー

    物理Iについて質問です。 ばねの一端を固定して他端に物体をつり下げるとして、 ばねを縮めた(または伸ばした)とき、弾性エネルギーを持つのはばねですよね。 それともばねに吊り下げた物体でしょうか。 弾性エネルギーの定義にようると、これをもっているのは力を加えられて変形している物体(上のような場合はばね)ということですが、 他の参考書には、変形したばねに固定された物体は弾性エネルギーを持つ、というような記述もありました。 初歩的なことだと思いますが、結局よくわからないのでどなたか教えていただけたら嬉しいです。

  • ばね振り子の力学的エネルギーの証明

    ばね振り子の振動中の任意の一点と自然長でのばね振り子の力学的エネルギーが等しいことを証明しようと思うのですが、うまくいきません。 外力が働かないため、力学的エネルギー保存則が成り立っているといえばそれまでなのですが、そうではなく、実際に計算によって確かめたいのです。 ばね定数kのばねに重さmの重りをぶら下げた時の釣り合いの位置をd(つまり、mg=kd)とする。 自然長(×つり合いの位置)Oでの速さをv0、任意の点Yでの速さをv、長さをyとすると、力学的エネルギー=運動エネルギー+重力の位置エネルギー+弾性エネルギーより、 E(Y)=mv^2/2+mg(y-d)+k(y-d)^2/2 E(O)=mv0^2/2+0+0 よって、 E(O)-E(Y)=m(v0^2-v^2)-(mg(y-d)+k(y-d)^2/2) =…… などと計算を続けたのですが、自分ではうまく0にできません。 どなたか模範回答をご教示ください。どうかよろしくお願いします。

  • 弾性力エネルギー

    水平面上で質量mのPにばねを取り付けばねを自然長からaだけ縮ませてからPを離した ばねの伸びの最大値をlを求めよ 動摩擦係数をμとする 縮ませた時点での力学的エネルギーが1/2×ka^2なのは分かるのですが、最大まで伸びたときの力学的エネルギーがわかりません 教えてください

  • ポテンシャルエネルギーから力を求めるのになぜ偏微分

    こんにちは、力学を勉強しております。重力やばねの力が保存力である、ということを学ぶ際に、ポテンシャルエネルギーUを習いました。そして、このポテンシャルエネルギーを位置で微分して力を求める、という次の式が登場しました (~はベクトル表示のための矢印とお考え下さい)。 ~F = -(∂U / ∂x) ~i - (∂U / ∂y) ~j - (∂U / ∂z) ~k .... (1) ここで、なぜ偏微分なのでしょうか。 ~F = -(dU / dx) ~i - (dU / dy) ~j - (dU / dz) ~k .... (2) というように通常の微分では問題になるのでしょうか。 たとえばバネの ポテンシャルエネルギーはU = (1/2)k x^2なので これを上式(1)のように微分すれば、F = -kxとなります。重力にしても同様に求まります。 ただ、(2)式を使っても、ばねの力も重力も求まってしまいます。 偏微分を使っているからには、その理由があると思うのですが、私の持っているどの教科書にもその説明がなく、突如として偏微分が示されているだけでして悩んでおります。 どうぞ宜しくお願いします。

  • 【高校物理】コンデンサーの外力と静電気力の関係

    電池が接続されていない充電済みのコンデンサーの間隔を⊿x広げると静電エネルギーが⊿U増えるとするとき外力の仕事をWとするとW=⊿Uになりますが、 コンデンサーにバネが付いている場合は外力の大きさ=静電気力+弾性力 になると思うのですが、答えは外力の大きさ=静電気力 として静電気力=-⊿U/⊿xとなっています。 ここで質問なのですが何故コンデンサー周りのエネルギー保存を考える際に外力は静電気力のみを考えれば良いのでしょうか?

  • バネの問題に関するエネルギーと仕事について質問です[高校物理]

    バネの問題に関するエネルギーと仕事について質問です[高校物理] 重り(質量m=0.1kg)が繋がったバネ(バネ定数k=4.9N/m)が天井にぶら下がっている系(重力加速度g=9.8N/kg)で、初めは手によってバネが自然長の状態になるところまで重りが持ち上げられています。それから手を下げていき、重りの重力とバネの力が釣り合うところで手が離れます。 重りの重力がした仕事(W1)と、手が重りにした仕事(W2)、バネの弾性力がした仕事(W3)を出す問題なのですが、力のつり合いから出す答えと力学的エネルギーの保存則から出す答えが自分の中で一致しなくて困っています。 力のつり合いから考えると、mg=kxでバネの伸びはx=0.2mとなります。なので重りの重力がした仕事はW1=Fx=mgx=0.98*0.2=0.196、手が重りにした仕事とバネの弾性力がした仕事はこの仕事と等しいはずで、なおかつこの二つの仕事は同じだけの仕事量のはずですから、W2=W3=0.98と出ます。これはこの問題の答えと合致します。 力学的エネルギーの保存則からこの問題を解くと、初めの状態での重りの位置エネルギーを0Jとしておくと、最初の状態は弾性エネルギーもないので力学的エネルギー(E1)は0です。手を離してからの状態は位置エネルギーが-mgxに弾性エネルギー1/2kx^2であり、力学的エネルギー(E2)は-0.98x+2.45x^2となり、E1=E2としてxを解くとx=0.4mとなってしまい、各仕事もずれてしまいます。 上記の論理はどのポイントで勘違いしているのか教えて頂けると助かります。 よろしくお願いします。