• ベストアンサー

スペクトラム図

あるアナログ信号がサンプリングされて離散時間信号になっているデータ(ここでは、sample.vcとします)があります。それをフーリエ変換して得られた複素スペクトラムの周波数成分の絶対値をとってそのデータを使い、スペクトラムを表示させました。sample.vcは1kHzと6kHzの正弦波を足しあわせたもので、出力結果は2kHzと6kHzのスペクトラムがグーンと飛び抜けた図になりました。これであってるのでしょうか?僕的には3kHz辺りでグーンと飛び抜けると予想してたのでちょっとわからなくなりました。どうなんでしょう?

質問者が選んだベストアンサー

  • ベストアンサー
noname#65504
noname#65504
回答No.1

sample.vcは1kHzと6kHzの正弦波を足しあわせたものなら、卓越するのは1kHzと6kHzになりますよ。 3kHzには卓越は生じません。 1kHzでなく、2kHzに卓越があるのなら、計算が正しく行われていないと思います。

関連するQ&A

  • 20kHz正弦波をCDで再生するとどうなりますか

    デジタル音響の開発者または詳しい方への質問です。 今更ですが、CDにおける高周波成分の再現性について疑問があります。 サンプリング周波数の1/2以下の周波数しか記録・再生できないというサンプリング定理については、ある程度理解しているつもりです。 また、サンプリング周波数の1/2以上の信号をAD変換するとエリアシングが発生するということも、原理として理解しています。 疑問は44.1kHzで20kHzないしそれに近い周波数の信号をサンプリングして記録し、記録したデータをDA変換した場合、どの程度忠実に原波形が再現できるかということです。 20kHzを44.1kHzでサンプリングすると、1周期に2.205回しかサンプリングできません。サンプリングデータを直線でつないでも、原周波数成分は残るものの、正弦波とはかけ離れた波形になってしまいます。 20kHzまで聞こえる人は稀ですし、聞こえても相当減衰しているので、音楽再生では大きな問題にならないかもしれませんが、13kHzだと大抵の人は聞こえるし、感度もある程度あります。13kHzの場合、1周期のサンプル数は約3.4個になりますが、これでも正弦波とはかなり違います。 仮に、まずまず正弦波に近いと言えるのが1周期5サンプル以上だとすると、44.1kHzで正弦波として記録再生できるのは、せいぜい9kHz程度ということになってしまいますが、なにか考え違いをしているでしょうか? あるいは、高度なデジタル信号処理技術によって、20kHzないしそれに近い周波数も正弦波に近い形で再現できるのでしょうか? サンプリング周波数の1/2に近い高周波信号の記録・再生について図解しているサイト等があればURLをご提示いただけると幸いです。 当方、↓このようなサイトは見つけました。 http://www2.oninet.ne.jp/ts0905/deeg/deeg11.htm

  • ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの振幅値に

    ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの振幅値について教えて下さい。 今想定している離散フーリエ変換の式は一般的なもので Σ(k=0~N-1) f(k)exp(-2πkni/N) を考えています。 また、離散フーリエ変換して得られるスペクトルは √(Re^2+Im^2) で計算します。 離散フーリエ変換を適用する関数を、 振幅1の直流、及び振幅1で周波数5[Hz]の正弦波とします。 (この2つの信号は別々の信号で合成されていません。) サンプリング周波数を20[Hz]とした場合、サンプリングして得られるデータ列はそれぞれ、 直流: 「1, 1, 1, 1」 正弦波: 「0, 1, 0, -1」 となると想定されます。 (正弦波をサンプリングする場合は位相が関わってきますが、今回は気にしないで下さい。) このデータ列に対して上記の離散フーリエ変換を適用した場合、 得られるフーリエスペクトルの振幅値はそれぞれ、 直流: 「4」(直流のフーリエスペクトルの振幅値値) 正弦波: 「2」(5[Hz]のフーリエスペクトルの振幅値) となります。 (データ点数は上の通り4点) ここで質問なのですが、 離散フーリエ変換して得られるスペクトルの振幅値から元の関数の振幅値を求める場合、 フーリエスペクトルをサンプリングの総データ点数で割ることは数学的に納得できます。 しかしこの例の場合、フーリエスペクトルを総データ点数で割ると、 直流: 「4 -> 1」 正弦波: 「2 -> 0.5」 となってしまい、直流は正しいのですが、正弦波の元の振幅値を正確に求めることは出来ません。 この例の場合、フーリエスペクトルの振幅値から正弦波の振幅値を正しく求めるには、 「フーリエスペクトルの振幅値*2/データ点数」 としてやらなければいけません。 上記のことに関して、なぜこのようになるのかを(2をかける理由を)教えて頂けないでしょうか。 当方、数学についてはあまり詳しくないため、簡単に説明して頂けると幸いです。

  • フーリエスペクトルの振幅について

    ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの 振幅値について教えて下さい。 今想定している離散フーリエ変換の式は一般的なもので Σ(k=0~N-1) f(k)exp(-2πkni/N) を考えています。 また、離散フーリエ変換して得られるスペクトルは √(Re^2+Im^2) で計算します。 離散フーリエ変換を適用する関数を、 振幅1の直流、及び振幅1で周波数5[Hz]の正弦波とします。 (この2つの信号は別々の信号で合成されていません。) サンプリング周波数を20[Hz]とした場合、 サンプリングして得られるデータ列はそれぞれ、 直流: 「1, 1, 1, 1」 正弦波: 「0, 1, 0, -1」 となると想定されます。 (正弦波をサンプリングする場合は位相が関わってきますが、 今回は気にしないで下さい。) このデータ列に対して上記の離散フーリエ変換を適用した場合、 得られるフーリエスペクトルの振幅値はそれぞれ、 直流: 「4」(直流のフーリエスペクトルの振幅値値) 正弦波: 「2」(5[Hz]のフーリエスペクトルの振幅値) となります。 (データ点数は上の通り4点) ここで質問なのですが、 離散フーリエ変換して得られるスペクトルの振幅値から 元の関数の振幅値を求める場合、 フーリエスペクトルをサンプリングの総データ点数で割ることは 数学的に納得できます。 しかしこの例の場合、フーリエスペクトルを総データ点数で割ると、 直流: 「4 -> 1」 正弦波: 「2 -> 0.5」 となってしまい、直流は正しいのですが、 正弦波の元の振幅値を正確に求めることは出来ません。 フーリエスペクトルの振幅値から正弦波の振幅値を正しく求めるには、 「フーリエスペクトルの振幅値*2/データ点数」 としてやらなければいけません。 上記のことに関して、 なぜこのようになるのかを(2をかける理由を)教えて頂けないでしょうか。

  • DFTのナイキスト周波数成分について

    はじめまして. 現在,デジタル信号処理について勉強している者ですが サンプリング定理について手持ちの書籍では あやふやな記述となっており, 理解に苦しむ箇所があるので質問させていただきます. 偶数のデータ点数を持つ実数信号を離散フーリエ変換したとき, ちょうどナイキスト周波数成分の 複素フーリエ係数は,必ず実数となります. 変換前の信号がこの周波数成分までしか含まないのであれば エリアシングは起きていないという認識で間違いないと思うのですが, このナイキスト周波数成分については,正確な振幅と位相の情報が 失われているように思えてなりません. この辺の分野に詳しい方,よろしくお願い致します.

  • アナログ信号とフーリエ変換

    デジタル信号の周波数分析として離散フーリエ変換があります。そして、アナログ信号の周波数分析としてフーリエ変換と考えていました。またアナログ信号を離散フーリエ変換で考える方法もあり、アナログ信号をサンプリングすることで離散フーリエ変換で考えることが出来ると考えています。 ですが、「アナログ信号の周波数分析にフーリエ変換を使うと定義されている」という考え方は間違いであると言われました。 何が違うのか分かりません。よく分からないので詳しく教えてください。

  • 連続時間正弦波信号と離散時間信号

    デジタル信号処理のレポートでこんな問題が出されたんですが解き方が解らなくて苦戦してます!!!。どなたか教えて頂けませんか? 問題: 周波数11[Hz]の連続時間正弦波信号をサンプリング周波数 8[Hz] でサンプリングした。 サンプリングによってこの離散時間信号と全く同じ波形となる連続時間正弦波信号の うち、最も低い正の周波数をもつ正弦波の周波数は何[Hz]か?

  • スペクトラムアナライザで観測することの利点

    先日、講義で任意の関数をフーリエ級数で展開して、 各周波数ごとにどれだけ電圧が加わっているかをスペクトラムアナライザを用いれば 観測することができる・・・みたいなことを教わりました。 そこでなんですが、 そもそもフーリエ級数展開してわざわざ正弦波だけの式に分けることの利点って何かあるんでしょうか? 時間軸に対する波形さえ分かれば特に問題が無い気がするのですが、 なぜわざわざ展開して、たくさんの正弦波の周波数の項に分けるのかなーっと疑問に思いました どなたかよろしくお願いします。

  • 信号とスペクトラム

    正弦波信号のスペクトラムはその周波数に相当する線スペクトルが出きる。 これを用いて搬送波に位相変調をかけると搬送波から変調波(正弦波)の周波数に相当した場所に線スペクトルが出ることは理解しているつもりですが、 何故、こうなるかと聞かれると、旨く説明出来ません。 数式では無く、旨く言葉で理解したいのですが、

  • フーリエ変換のスペクトルについて

    趣味で音の勉強をしている高校2年です。 離散化されたサンプル数Nの音データ(サンプリング周波数はkHz)をフーリエ変換(DFT)すると、N個のデータが取れると聞きました。 このN個のデータをスペクトルとして表示する場合、横軸はどのような値になるのですか? 0(Hz)~N(Hz)になるのでしょうか。

  • 複素フーリエ変換の位相について

    画像のとおり位相0度から始まるA列の正弦波を複素フーリエ変換しました。 その実部、虚部のグラフがReal、Imagです。 虚数のみ正弦波の周波数のところにピークがあって、実部は0です。つまりこれは位相が90度又は-90度という事になります。 試しに45度から始まる正弦波を複素フーリエ変換すると、上記は-45度になりました。 フーリエ変換の位相というのはそれぞれの周波数成分を正弦波として開始時の位相を求めるものと思っていましたが、実は余弦波だとしているという事なのでしょうか?