• ベストアンサー
  • すぐに回答を!

スペクトラム図

あるアナログ信号がサンプリングされて離散時間信号になっているデータ(ここでは、sample.vcとします)があります。それをフーリエ変換して得られた複素スペクトラムの周波数成分の絶対値をとってそのデータを使い、スペクトラムを表示させました。sample.vcは1kHzと6kHzの正弦波を足しあわせたもので、出力結果は2kHzと6kHzのスペクトラムがグーンと飛び抜けた図になりました。これであってるのでしょうか?僕的には3kHz辺りでグーンと飛び抜けると予想してたのでちょっとわからなくなりました。どうなんでしょう?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数400
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#65504
noname#65504

sample.vcは1kHzと6kHzの正弦波を足しあわせたものなら、卓越するのは1kHzと6kHzになりますよ。 3kHzには卓越は生じません。 1kHzでなく、2kHzに卓越があるのなら、計算が正しく行われていないと思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 信号とスペクトラム

    正弦波信号のスペクトラムはその周波数に相当する線スペクトルが出きる。 これを用いて搬送波に位相変調をかけると搬送波から変調波(正弦波)の周波数に相当した場所に線スペクトルが出ることは理解しているつもりですが、 何故、こうなるかと聞かれると、旨く説明出来ません。 数式では無く、旨く言葉で理解したいのですが、

  • 連続時間正弦波信号と離散時間信号

    デジタル信号処理のレポートでこんな問題が出されたんですが解き方が解らなくて苦戦してます!!!。どなたか教えて頂けませんか? 問題: 周波数11[Hz]の連続時間正弦波信号をサンプリング周波数 8[Hz] でサンプリングした。 サンプリングによってこの離散時間信号と全く同じ波形となる連続時間正弦波信号の うち、最も低い正の周波数をもつ正弦波の周波数は何[Hz]か?

  • 複素フーリエ変換の位相について

    画像のとおり位相0度から始まるA列の正弦波を複素フーリエ変換しました。 その実部、虚部のグラフがReal、Imagです。 虚数のみ正弦波の周波数のところにピークがあって、実部は0です。つまりこれは位相が90度又は-90度という事になります。 試しに45度から始まる正弦波を複素フーリエ変換すると、上記は-45度になりました。 フーリエ変換の位相というのはそれぞれの周波数成分を正弦波として開始時の位相を求めるものと思っていましたが、実は余弦波だとしているという事なのでしょうか?

  • アナログ信号とフーリエ変換

    デジタル信号の周波数分析として離散フーリエ変換があります。そして、アナログ信号の周波数分析としてフーリエ変換と考えていました。またアナログ信号を離散フーリエ変換で考える方法もあり、アナログ信号をサンプリングすることで離散フーリエ変換で考えることが出来ると考えています。 ですが、「アナログ信号の周波数分析にフーリエ変換を使うと定義されている」という考え方は間違いであると言われました。 何が違うのか分かりません。よく分からないので詳しく教えてください。

  • 二重フーリエ変換

    こんにちは。 普通の横軸時間軸の周期関数のフーリエ変換の参考書はよくあるのですが、二重フーリエ変換(離散)に詳しい参考書、サイトを探しています。 二重フーリエ変換の使用目的は、正弦波をPWM変調(またはΔΣなど)する時、周期的にパルス幅が変わってくるのですが、これは元の正弦波と三角波(など)の組み合わせによって回路で処理されます。 このPWM波形を周波数解析するのに、元の正弦波と三角波のそれぞれの周波数が関わり、二重のフーリエ変換が必要になるということです。 どなたか、解かる方いたらアドバイスお願いします。

  • 振幅を求めるのに最適な窓関数

    サンプリング周期1usで収集した10万点(0.1秒間連続測定)のデータがあります。 これは正弦波信号+ノイズというもので、正弦波の周波数は約100kHzです。 この正弦波の時間的なゆらぎを求めたいので、例えば5万点づつにデータを分割し、その5万点にDFTを行ってピークとなる振幅を求める方法を考えました。 この場合5万点のデータ数だと周波数分解能は100Hzとなるため、もし本来の周波数が例えば100.03kHzだとするとその振幅情報は本来の振幅に比べてかなりずれてしまいます。 これは解析対象区間に含まれる正弦波の数が整数個でないことに起因するのですが、このような場合窓関数を使うように言われていますが、振幅の誤差が1%以下とするためにはどのような窓関数を使ったらよいでしょうか? または、別の方法で振幅を1%以下の精度で求められるという情報でも助かります。

  • 20kHz正弦波をCDで再生するとどうなりますか

    デジタル音響の開発者または詳しい方への質問です。 今更ですが、CDにおける高周波成分の再現性について疑問があります。 サンプリング周波数の1/2以下の周波数しか記録・再生できないというサンプリング定理については、ある程度理解しているつもりです。 また、サンプリング周波数の1/2以上の信号をAD変換するとエリアシングが発生するということも、原理として理解しています。 疑問は44.1kHzで20kHzないしそれに近い周波数の信号をサンプリングして記録し、記録したデータをDA変換した場合、どの程度忠実に原波形が再現できるかということです。 20kHzを44.1kHzでサンプリングすると、1周期に2.205回しかサンプリングできません。サンプリングデータを直線でつないでも、原周波数成分は残るものの、正弦波とはかけ離れた波形になってしまいます。 20kHzまで聞こえる人は稀ですし、聞こえても相当減衰しているので、音楽再生では大きな問題にならないかもしれませんが、13kHzだと大抵の人は聞こえるし、感度もある程度あります。13kHzの場合、1周期のサンプル数は約3.4個になりますが、これでも正弦波とはかなり違います。 仮に、まずまず正弦波に近いと言えるのが1周期5サンプル以上だとすると、44.1kHzで正弦波として記録再生できるのは、せいぜい9kHz程度ということになってしまいますが、なにか考え違いをしているでしょうか? あるいは、高度なデジタル信号処理技術によって、20kHzないしそれに近い周波数も正弦波に近い形で再現できるのでしょうか? サンプリング周波数の1/2に近い高周波信号の記録・再生について図解しているサイト等があればURLをご提示いただけると幸いです。 当方、↓このようなサイトは見つけました。 http://www2.oninet.ne.jp/ts0905/deeg/deeg11.htm

  • 正弦波の足し算

    周波数Fの正弦波があったとき、 周波数Fの正弦波 + 周波数3*Fの正弦波は上下対称な波形になりますよね。 それなのに、 周波数Fの正弦波 + 周波数2*Fの正弦波は上下対称な波形にならないのは、どうしてでしょうか。 加法定理など使えば証明できそうのですが、 いまいちできません。 簡単な疑問だと思うのですが、よろしくお願いします。

  • 正弦波を提供するインターネットサイトはありますか?

     音声周波数の正弦波を発生する方法については繰り返し質問が出ているようですが、インターネットで正弦波信号そのものを提供するサイトはありますか?  ちょっと検索したところでは見当たりません。  たとえば100Hz、1kHz、2kHz、4kHz、8kHzというような代表的な周波数の信号を提供しているだけでも良いと考えています。

  • サンプリングを高くするほどフーリエ変換値がずれる?

    ある周波数解析ソフトで「フーリエ変換」釦があるのですが、サンプリング周波数を高くするほど、フーリエ変換値がずれてしまいます。 (例)60Hzの正弦波のみの1s間の波形を「フーリエ変換」釦を押すと、 (1)サンプリング周期(10ms)→ 50.5Hz、 52.5Hz、 76.5Hz、の順でピーク点 (2)   〃    (1.0ms)→ 62.5Hz がピーク点。 (3)   〃    (0.1ms)→ 98.5Hz が 〃 (4)   〃   (0.001ms)→  0.0Hz が 〃 となり、周波数ピーク点が60Hzに合いません。このように大きくずれてしまうものでしょうか? なお、同ソフトで「フーリエ級数展開」釦では特定区間指定でき、60Hzの「1次」のみに表示されるのですが、「フーリエ変換」機能には、区間指定釦がありません。 詳しい説明書きはないのですが、通常そのような使い方となるものでしょうか?

専門家に質問してみよう