ヘルダーの不等式の証明について

このQ&Aのポイント
  • ヘルダーの不等式の証明についての解説をまとめました。
  • 不等式が斉次ならAaBaによっても満たされるので、証明はΣ|ak|^p=Σ|bk|^q=1の時だけでよい、という点について理解ができていません。
  • Σ|ak|^p=Σ|bk|^q=1の時、Σ|ak|^p=α,Σ|bk|^q=βの時、のようにきちんと分けられており、証明も理解できましたが、教科書の記述については分かりません。
回答を見る
  • ベストアンサー

ヘルダーの不等式の証明について教えて下さい

教科書のヘルダーの不等式Σ|akbk|≦(Σ|ak|^p)^(1/p)+(Σ|bk|^q)^(1/q)を示す解説で(Σはk=1からnまで足してます)次のように書いてありました。 「この不等式が斉次、つまり2つのベクトル a=(a1,a2,・・・an),b=(b1,b2,・・・bn) によって満たされるなら、Aa,Ba(A,Bは任意の数)によっても満たされる。 よってこの不等式の証明はΣ|ak|^p=Σ|bk|^q=1の条件の時Σ|akbk|≦1を示せばよい」 としてこのΣ|akbk|≦1の証明が書いてありました。この式の証明は理解できたのですが、 不等式が斉次ならAaBaによっても満たされるので証明はΣ|ak|^p=Σ|bk|^q=1の時だけでよい、というのが分かりません。 図書館やネットで調べたのですが、Σ|ak|^p=Σ|bk|^q=1の時、Σ|ak|^p=α,Σ|bk|^q=βの時、のようにきちんと分けられていました。2つとも証明は理解できたのですが、教科書の「不等式が斉次ならAaBaによっても満たされるので」のような言葉で済ませてもいいのでしょうか? ここらが良く分からないので分かる方、お願いいたします

質問者が選んだベストアンサー

  • ベストアンサー
  • jcpmutura
  • ベストアンサー率84% (311/366)
回答No.1

そのヘルダーの不等式の右辺は (Σ|ak|^p)^(1/p)+(Σ|bk|^q)^(1/q) 和ではなく (Σ|ak|^p)^(1/p)(Σ|bk|^q)^(1/q) 積です 1/p+1/q=1 Σ_{k=1~n}|a(k)b(k)|≦(Σ_{k=1~n}|a(k)|^p)^{1/p}(Σ_{k=1~n}|b(k)|^q)^{1/q} この不等式が a={a(k)}_{k=1~n} b={b(k)}_{k=1~n} によって満たされるなら Σ_{k=1~n}|Aa(k)Bb(k)| =|AB|Σ_{k=1~n}|a(k)b(k)| ≦|AB|(Σ_{k=1~n}|a(k)|^p)^{1/p}(Σ_{k=1~n}|b(k)|^q)^{1/q} =(Σ_{k=1~n}|Aa(k)|^p)^{1/p}(Σ_{k=1~n}|Bb(k)|^q)^{1/q}] だから Aa,Bb(A,Bは任意の数)によっても満たされる(BaではなくBbです) A=(Σ_{k=1~n}|a(k)|^p)^{1/p} B=(Σ_{k=1~n}|b(k)|^q)^{1/q} とすると Σ_{k=1~n}|a(k)/A|^p=1 Σ_{k=1~n}|b(k)/B|^q=1 だから Σ_{k=1~n}|a(k)b(k)|/(AB) =Σ_{k=1~n}|{a(k)/A}{b(k)/B}| =Σ_{k=1~n}{|a(k)/A|^p}^{1/p}{|b(k)/B|^q}^{1/q} ≦Σ_{k=1~n}[(1/p){|a(k)/A|^p}+(1/q)|b(k)/B|^q] =1/p+1/q =1 ∴ Σ_{k=1~n}|a(k)b(k)|≦AB=(Σ_{k=1~n}|a(k)|^p)^{1/p}(Σ_{k=1~n}|b(k)|^q)^{1/q}

o-saka-iru
質問者

お礼

画像までのせていただき、有難うございます。 よく分かりました

関連するQ&A

  • 絶対値を含む不等式の証明

    お世話様です。 不等式の証明は平方完成して解いてきましたが、絶対値を含む不等式も それで解けるそうなのですが、なにをしていいのかまったくわかりません。 例題として|a+b|>=|a|+|b| これの答えはあります。 どんなことをすれば、この絶対値を含む不等式が証明されるかできるだけ わかりやすく教えて頂ければ幸いです。 納得次第、締め切ります。よろしくお願いします。

  • 不等式の証明と命題の真偽(基本的)

    お世話になっております。 実数a、b、cに対して、 等式 |a|+|b|+|c|=|a+b+c|…P が成立つことは、ab+bc+ca≧0 …Q が成立つための○○条件である。(○の数は特に意味なし) という問題です。証明も合わせて(不等式を証明して、等号成立条件を調べてから命題を考えてみたかった為)以下のように考えてみました。 まず証明。 与えられた等式を考える前に、不等式 |a|+|b|+|c|≧|a+b+c|…(2)を証明する。 (2)の両辺は正または0であるから、両辺の二乗の差を考えて (|a|+|b|+|c|)^2-|a+b+c|^2 =2{|ab|+|bc|+|ca|-(ab+bc+ca)} =2{(|ab|-ab)+(|bc|-bc)+(|ca|-ca)}…(3) ここで、|ab|≧ab,|bc|≧bc,|ca|≧ca だから、(3)≧0。従って不等式(2)は成立つ。等号成立は、ab≧0,bc≧0,ca≧0…(4) より、ab+bc+ca≧0 の時に限る。 よって、等式Pが成立つとき、a,b,cはQを満たす。(ここが一番曖昧です) 逆にQが成立つとき、(4)が成立つから、積の場合分けで導かれる二つの場合で、 a≧0かつb≧0かつc≧0 のときは、Pは成立つ。 a≦0かつb≦0かつc≦0 のときはPは、 左辺=-a-b-c=-(a+b+c)=右辺 より成立つ。 以上より、○○は必要十分条件が適当と思す。 以上、拙いですが頭捻ってみました。当方が微妙だと感じるのは、不等式の証明についての説明部分(解答ではb+cを一括りにしてaと(b+c)の二変数と考えて、二変数については不等式が成立つことを利用して証明してました)と、既に書いた通り、条件Pが十分条件であることの説明部分(こちらは解答なし)です。 長ったらしい文で恐縮ですが、閲覧ついでにご回答いただけると嬉しいです。宜しくどーぞ。

  • 不等式の証明

    数学を勉強しているのですが、聞く人がいなくて困っています。 よろしくお願いします。 (1) p>0,q>0,p+q=1のとき、関数 f(x)=x^2 について不等式   f(px1+qx2)≦pf(x1)+af(x2) が成り立つことを示せ。   ※px1,qx2,x1,x2の1,2は下付きの小文字です。どの様に表記したらよいのかわかりません。すいません。 (2) a>0,b>0,a+b=1 のとき、(1)を用いて不等式   (a+1/a)^2+(b+1/b)^2≧25/2が成り立つことを示せ。 (1)は解けるのですが、(2)がわかりません。 よろしくお願いします。

  • 不等式の証明問題(高1)

    こんばんわ。高1の不等式の証明で分からない問題があるんですけど、明日提出でかなり頑張ってやっているのですが、全然分からない問題がいくつか…次の2問です。ご教授ください。 (1) p^2<qr, x^2<yz, qy>0のとき、不等式(p+x)^2<(q+y)(r+z)が成り立つことを証明せよ。 (2) a>0, b>0, c>0のとき、次の不等式が成り立つことを証明せよ。 (1+a^3)(1+b^3)(1+c^3)≧(1+abc)^3

  • コーシー・シュワルツの不等式の証明について

    コーシー・シュワルツの不等式の証明について 二次不等式を使った証明なのですが、場合分けをする理由がよくわかりません。 どなたかご教示お願いします。 問.tがどんな実数値を取っても常に(at-x)^2+(bt-y)^2≥0であることを用いて、次の不等式を証明せよ。    (a^2+b^2)(x^2+y^2)≥(ax+by)^2 これを証明するには、 (at-x)^2+(bt-y)^2≥0の左辺をtについて整理して (a^2+b^2)t^2-2(ax+by)t+x^2+y^2≥0 したがってtの2時不等式が得られるので、(左辺)≥0となる条件から D/4=(ax+by)^2-(a^2+b^2)(x^2+y^2)≤0 移行して (a^2+b^2)(x^2+y^2)≥(ax+by)^2 と、ここまでは導けたのですが、解答では (i)a^2+b^≠0 すなわち a^2+b^2>0のとき (ii)a^2+b^2=0 すなわち a=b=0のとき と場合分けをして、どちらも成り立つことを証明しています。 この二次不等式が0以上であるためには判別式D≦0とともにa^2+b^2>0(下に凸)という条件が入ってくるのだと思いますが、それならば(ii)はいらないのではないでしょうか。2つの場合が成り立たなければならない理由はなんでしょうか。 よろしくお願いいたします。

  • 不等式の証明

    次の不等式の証明はどう考えるのでしょうか。 p>1、q>1 (1/p)+(1/q)=1 α、β∈R |α|・|β|≦(|α|のP乗/p)+(|β|のq乗/q)

  • 数II 不等式の証明

    御世話になっております。 教科書一冊、参考書一冊で数学を独学中の者です。 例えば、不等式a^2+b^2+c^2≧ab+bc+caを証明しろ という問題。また、これに限らず、二次の不等式の証明は、証明の大筋をざっくり掴んだ当方には中々その解法の流れが掴めずにつまずいております。なぜなら、p⇒qの形をとらずにいるためです。 実数の二乗は0以上という基本は踏まえてます。しかし、不等式の左辺-右辺を平方完成する意味も中々掴めません。 平方完成する意味とか含めて、不等式の証明についてざっくりと御説明下さると助かります。御自身の解釈の範囲で構いません。宜しくお願い致します。

  • 不等式の証明

    a,b,c,dが実数の時、次の不等式(絶対値、ルート、二乗付の式)が成立する らしいのですが、証明方法が判りません、お教え下さい。  |√(a^2 + b^2) - √(c^2 + d^2)| =< |a-c| +|b-d| 

  • 不等式の証明を教えてください

    不等式の証明問題で分からないので教えてください。 a>0,b>0のとき、次の不等式を証明しなさい。また、等合が成り立つ場合を調べなさい。 a^3+b^3≧a^2b+ab^2 この問題がどうしてもわからないので、教えてください。

  • 不等式の証明

    FKG不等式に関連する次の不等式の問題: 数列{a_n},{b_n}を単調増大列とするとき、 (a_1b_1+a_2b_2+…+a_nb_n)/n≧{(a_1+a_2+…+a_n)/n}{(b_1+b_2+…+b_n)/n} を示せ。 を解きたいのですが、Abel変形(積分の部分積分に相当するテクニック)を使えば簡単に証明できるのは知っています。で、この不等式、数学的帰納法では解けないのか?ということが少し気になりました。 n=1なら自明で、n=kで成立すれば、n=2kで正しい、ということは容易に分かります。したがってn=2^mタイプの自然数に対しての成立は簡単ですが、任意のnについて成り立つことを帰納法でうまく示すことは出来ますか?何かアイデアがあればぜひ教えてください。n=k(≧2)で成り立てば、n=k-1でも成り立つ、みたいなことが言えるとよいのですが。