• ベストアンサー
  • 困ってます

中学数学の図形の平行についてです。

また、疑問が浮かびました>< 画像にて、線分AB,BC,DE,EF,AC,DFはどう平行なa,b,cに対して平行にスライドしても長さが変わらないので、 AB:BC=DE:EFとAB:AC=DE:DFは成り立ちますよね。 平行か分からない3直線a,b,cにおいて、AB:BC=DE:EFとAB:AC=DE:DFのいずれか片方だけでも成り立てば、3直線は平行といえますか? 次の質問の続きです→http://okwave.jp/qa/q9069719.html

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数128
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

>平行か分からない3直線a,b,cにおいて、AB:BC=DE:EFとAB:AC=DE:DFのいずれか片方だけでも成り立てば、3直線は平行といえますか? 言える ただし、その場合はACとDFが平行ではないという条件が必要なはず。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます(^^♪ おかげ様で、よく考えれば分かりました。 2点A,Dが重なったとして考えても三角形と比の定理が同じという所より、平行にはなると直観的にはいえそうです。 そして、反例が1つ分かりました。 その反例とは、3直線a,b,cは固定でに直線l、mを真横に平行移動で動かしていきますが、その状態で3直線a,b,cは固定されていて一切動いてないのに2点A,Dが重なったらなぜか平行でない3直線a,b,cがいきなり平行になるという所です。 これは「平行か分からない3直線a,b,cにおいて、AB:BC=DE:EFとAB:AC=DE:DFのいずれか片方だけでも成り立てば、3直線は平行といえる。」という命題が真と分かりますね。

関連するQ&A

  • 中学数学の図形についてです。

    画像にて、線分AB,BC,DE,EF,AC,DFはどう平行なa,b,cに対して平行にスライドしても長さが変わらないので、 AB:BC=DE:EFは成り立ちますが、AB:AC=DE:DFも成り立ちますか?

  • 【中学数学】図形

      ★2枚の三角形の紙ABCとDEFがあり、△ABC≡△DEF、AB=12、BC=18、AC=15である。この2枚を図(添付)のように頂点Aと頂点Dを重ねると、辺BCと辺DE、辺ACと辺EFがそれぞれ交わった。 また、辺BCと辺DEの交点をH、辺BCと辺EFの交点をIとする。 ☆B子さんは、BCとDFが平行のとき、線分BHと線分EHの長さの比が求められることに気付いた。線分BHと線分EHの長さの比を、もっとも簡単な整数の比で表しなさい。(△ABH∽△IEHは証明済) A) 4 : 1 わかりやすい解説をお願いしますvv

  • 中学数学で相似についておしえてください。

    相似のところで、 「三角形ABCと三角形PQRが相似で、AとP、BとQ,CとRがそれぞれ対応する時、三角形ABC相似三角形PQRと書く」と書いてありました。(三角マークとかは出せませんでした。すみません・・) そういう時、もし、辺ABと辺QRとかが対応する辺ってことでもいいのかどうかで、 いけないんじゃないかと思ったんですが、問題であれって思ったのがあってわからなくなってしまいました。 三角形ABCとDEFで次の関係の時相似といえるか、という問題で、 (1)DE:AB=DF:BC=EF:CA (2)AB:DE=BC:EF、角B=E (3)AC:EF=BC:DF、角C=F (4)AB:DE=AC:EF,角A=D (5)角A=D、角B=F (6)角B=F,角C=Eです。 答えは(4)以外はすべて相似でした。 これってDFとBCとかは対応しているっていうことでしょうか? 数学が苦手でぜんぜんわかりません。 もし、よかったら教えてください。

その他の回答 (1)

  • 回答No.2

ですね。相似になるので。右の線 DFをずらして三角形を作ります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます(^^♪ おかげ様でよく考えれば分かりました。 2点A,Dが重なったとして考えても三角形と比の定理が同じという所より、平行にはなると直観的にはいえそうです。 そして、反例が1つ分かりました。 その反例とは、3直線a,b,cは固定でに直線l、mを真横に平行移動で動かしていきますが、その状態で3直線a,b,cは固定されていて一切動いてないのに2点A,Dが重なったらなぜか平行でない3直線a,b,cがいきなり平行になるという所です。 これは「平行か分からない3直線a,b,cにおいて、AB:BC=DE:EFとAB:AC=DE:DFのいずれか片方だけでも成り立てば、3直線は平行といえる。」という命題が真と分かりますね。

関連するQ&A

  • 数1 図形問題の解答お願いします H24.06

    下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように△ABCの2辺AB、ACの中点をそれぞれD、Eとし、 線分DCを2:1に内分する点をHとして、頂点Aから点Hを通る 直線と線分DEとの交点をG、辺BCとの交点をFとする。 また、DB=4、DG=2、∠ABC=60°である。 (1) 三角形の辺BCの長さは、BC=【1】であり、線分DEの長さはDE=【2】である。 (2) 三角形の辺ACの長さは、AC=【3】である。 (3) この△ABCの面積は、【4】であり、△ADGの面積の【5】である。

  • 中学数学の図形の問題です。

    数学の図形の問題がわかりません。教えてください。よろしくお願いいたします。 図のようにAB=6cm、BC=9cmの長方形ABCDがある。辺ADの上側に点Eを、AB=AE、AD=DEとなるようにとる。また、点Eから辺ADにひいた垂線と辺ADとの交点をFとし、点Dから線分AEにひいた垂線と線分AEとの交点をGとする。点Hは線分CEと辺ADとの交点である。 このとき次の問いに答えなさい。 ・点Eと直線CDとの距離を求めなさい。 ・線分DHの長さは線分FHの長さの何倍か求めなさい。

  • 中学数学の図形の問い

    [1]線分ABを直径とする円Oがある。円の接線をATとする   円の周上にAC//ODなる2点C,Dをとる。   ABとCDの交点をEとする。   AB=4cm ∠DAT=36°のとき、   ∠ADCの大きさと線分OEの長さを求めなさい。 [2]点Oを中心とした円がある   A,B,C,Dは円Oの周上の点で⌒AC=⌒BD   また、弦ACと弦BDの交点をEとし、中心Oから、弦AC,弦BDに   それぞれ垂線OH,OKをひく   ∠HEK=130°のとき、∠OHKの大きさを求めなさい。 [3]全ての辺の長さが等しい正四角錘ABCDEがある。   各側面の三角形の重心をそれぞれP,Q,R,Sとし、   底面BCDEの対角線の交点をTとする。  (1)四角錘TPQRSの体積は、正四角錘ABCDEの体積に何倍になるか?  (2)AB=6cmのとき、点Pから正四角錘の表面にそって、     点Dまで行くときの最短の長さを求めなさい。 [4]ある点Aから円Oに接線を二本引き、接点をそれぞれB,Cとする。   円Oの円周上に点Dをとる。   点Dを通り、線分BCに平行な直線と接線AB,ACの交点を   それぞれE,Fとする。(AB<AE,AC<AF)   BC=3cm CD=4cm DB=2cmとする。  (1)FDとDEの長さの比を求めなさい  (2)ADとBCの交点をGとするとき、CGの長さを求めなさい いっぱいありますが、どうぞよろしくお願いします

  • 中学の数学

    AB=5cm BC=3cm ∠C=90°の直角三角形ABCにおいて∠Bの二等分線と辺ACとの交点をDとする。2点C、Dから辺ABにそれぞれ垂線CE、DFを引く。 CEの長さとEFの長さを教えて下さい。 ※ AB:AC:BC=5;4;3になってるところまで分かりました。 たぶん三平方の定理をつかうと思うのですが、ここからよく分からなくなってしまいました。 教えて下さい!!

  • 数学I

    1辺の長さが4の正方形ABCDがある。辺AB上に点EをAE=2√2となるようにとり、線分DEと線分ACの交点をF、直線DEと直線BCの交点をGとするとき (1)DF:FE=√□:□ となる。 (2)ED:EG=□:√□-□ となる。 (3)FE:EG=□:□ となる。 □に一文字入ります。 答えの出し方も教えてください。 よろしくお願いします。

  • 図形の問題

    三角形ABCがある。辺AB、ACの中点をそれぞれD、Eとし、辺BCを1:2に分ける点をFとする。また、線分CDと線分EFとの交点をGとする。CG=6のとき、線分GDの長さを求めよ。 と言う問題です。 線分BCの比の合計が3なので、DEの比が3/2として、 2:3/2=6:DGとなり DG=9/2 となりました。 このような考えでよろしいのですか? 比でも足して、中点連結定理がなりたつのですか? また、私が考えた解答で間違いがありましたら教えてください。

  • 数学

    図の△ABCで.点D.EはAD=DE=EBとなる点がある. BCを延長した直線と.点Dを通り線分ECに平行な直線との交点をFとする. 辺ACと線分DFの交点をGとする. GF=7cmのとき.DGの長さを求めなさいという問題がありまして私は7/3と書きました はたして7/3cmで合っているでしょうか? まちがっていたら教えてください お願いします

  • 数学

    三角形ABCにおいて∠A>90°、BC=1とする。頂点Bから直線ACに垂線を下ろし、直線ACとの交点をDとする。また、頂点Cから直線ABに垂線を下ろし、直線ABとの交点をEとする。直線DEに頂点B,Cから垂線を下ろし、直線DEとの交点をそれぞれP、Qとする。∠ABC=α、∠ACB=βとおく。 (1)線分BP,EQの長さをα、βを用いてあらわせ。 (2)∠BAC=135°のとき、四角形PBCQの面積Sの最大値を求めよ。 とき方のヒントを教えてください!

  • 数学I

    半径√21/3の円に内接する五角形ABCDEにおいて、AB=2 BC=1 DE=2 AC=CD=DAであるとき、 (1)AB=√□ cos∠BAD=√□/□□ BD=□ となる。 (2)四角形ABCDhの面積は□√□/□ となる。 (3)△ADEの面積は√□/□ となる。 (4)五角形ABCDEの面積は、□□√□/□ となる。 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 1辺の長さが4の正方形ABCDがある。辺AB上に点EをAE=2√2となるようにとり、線分DEと線分ACの交点をF、直線DEと直線BCの交点をGとするとき (1)DF:FE=√□:□ となる。 (2)ED:EG=□:√□-□ となる。 (3)FE:EG=□:□ となる。 真ん中で問題が変わっています。 □に一文字入ります。 答えの出し方も教えてください。 よろしくお願いします。

  • 数学Aの問題

    数学Aの角と二等分線と比の利用の問題です。 AB=6、BC=5、CA=4である△ABCにおいて、∠Aおよび頂点Aにおける外角の二等分線が直線BCと交わる点を、それぞれD、Eとする。線分DEの長さを求めよ。 という問題で、解答が 定理1から BD:CE=AB:AC=6:4=3:2 よって2/3+2・BC=2/5・5=2 定理2からBE:CE=AB:AC=3:2よってCE=2/3-2・BC=2・5=10 とあるのですがCE=2/3-2・BCの式がよくわかりません。詳しく解説していただけるとありがたいです。