• ベストアンサー
  • 困ってます

三次関数の問題です。

一応自分でもやってみたのですが、途中でわからなくなりました。 次の問題です。 Θは0°<=Θ=>90°を満たす定数角とする。三次関数 F(x)=x^3-(3cos^2Θ)x^2+(3cos2Θ)x が極値を持ち、極大値をMとおくとき、次の各問いに答えよ。 (1) Θのとり得る値の範囲を求め、MをΘで表せ。 (2) (1)の範囲でΘを変化させるとき、Mのとり得る値の範囲を求めよ。 です。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数58
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#598
noname#598

F’(x)=3x^2-2(3cos^2Θ)x+3cos2Θ    =3{x^2-2(cos^2Θ)x+cos2Θ} cos^2Θ=(1+cos2Θ)/2より、    =3{x^2-(1+cos2Θ)x+cos2Θ}    =3(x-1)(x-cos2Θ) F(x)が極値を持つためには、 方程式F’(x)=0が異なる2つの実数解をもつ。 すなわち、cos2Θ≠1 よって、0°<Θ≦90° また、この条件では、cos2Θ<1より、(増減表省略) x=cos2Θのとき極大となる。 M=(cos2Θ)^3-(3/2)*(1+cos2Θ)(cos2Θ)^2+3(cos2Θ)^2  =(1/2)*(cos2Θ)^2*(3-cos2Θ) (2) cos2Θ=tとすると、0°<Θ≦90° より -1≦t<1 M=(1/2)*(3t^2-t^3) 両辺をtで微分すると、 M’=(3t/2)(2-t) t=-1のときM=2 t=1のときM=1(最大値なしの状態が避けられることの確認) t=0のときM=0 これと増減表(略)より、 0≦M≦2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

早速のお答えありがとうございました。こんなにシンプルに解けるなんて思ってもいませんでした。ありがとうございました。

関連するQ&A

  • 三次関数

    三次関数f(x)=x^3+ax^2+bx+cはx=1で極大値1をとり、x=3で極小値をとる。このときa,b,cの値と極小値を求めよ。 という問題です。答えa=-6,b=9,c=-3,f(3)=-3 答えだすのは問題ないんですけど、丁寧な模範解答にこう書かれていました。 「y=f(x)がx=1,3で極値をとるならばf’(1)=f’(3)=0が成立します。(f’(1)=f’(3)=0をそれぞれ計算し、a,bの値をだした後)、 a,bの値を出した直後はまだ必要条件だから、実際に x=1,3の前後でf’(x)の符号変化が起きているどうかを確認しておくべきです。十分性の確認というやつですね」 そこで質問ですが、問題文に「x=1で極大値1をとり、x=3で極小値をとる。」とあるんだから、普通に前後で符号の変化が起こることが分かるのに、なぜわざわざ確認しないといけないんですか? 極値と、そこで傾きが0になる、は同値ではないことは理解しています。 だれかご教授お願いします!

  • 三次関数の問題

    三次関数についての問題です。 f(x)=1/3x^3+ax^2+bx+cにおいて (1)f(0)=0 f´(0)=2 (2)x=tで極大になり、また   x=2tで極小になる。 この二つを満たす時、 a・b・c・tの値と、f(x)の極値を求めなさい。 分かるのはtのみで、他が全く分かりません。 判明したtから他の値も求まるのでしょうか。 分かる方いましたら、ヒントでかまいませんので教えて ください。

  • 三次関数の問題です。教えて下さい。

    3次関数f(x)=xの三乗-(a+3)xの二乗+3ax-2b(a,bは定数)があり、 f′(2)=-3を満たしている。 関数f(x)の極大値をM、極小値をmとする。M-2m=7であるときのbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。の部分 の考え方と解き方が分かりません・・ 詳しい解説を書いていただけると嬉しいです。 よろしくお願いします。

  • 三次関数の導出

    次の問題について ある三次関数について、極小値は(4,-53)、極大値の座標が(-2,55)であることが分かっています。 三次関数の式を求めよ (元は違う問題なので、答えが求まらないかもしれません) 関数をf(x)=ax^3+bx^2+cx+dとおき、 f'(x)=0より、f'(x) = 3ax^2+2bx+c = (x-2)(x-4) = 0とおきました。 条件から変曲点が(1,1)ですから、これも利用して計算しようとしているのですが、 a,b,c,dの値が一定に定まりません。 上記条件付けに何か間違っているところはあるでしょうか。

  • 三次関数が極値を持つための条件

    三次関数f(x)が極値を持つための条件はf'(x)に符号変化が起こることだと本に書いてあるのですが、なぜなのか理由を教えてください。

  • 数学「微分法」の問題が分りません。教えてください。

    (1)kは定数とします。3次関数f(x)=-x^3+kx^2-3kx-2があります。(途中式もお願いします。) (1)f(x)が極値をもつようなkの値の範囲を求めてください。 (2)f(x)が単調に減少する関数となるようなkの値の範囲を求めてください。 (2)関数f(x)=x^3+ax^2+xが0<x<1の範囲で極大値と極小値をもつように、定数aの値の範囲を定めてください。(途中式もお願いします。) ちなみに答えは、 (1)(1)k<0、9>k (2)0≦k≦9 (2)-2<a<-√3 です。

  • 数学の微分についてです。

    閲覧ありがとうございます。 問題で『aを定数とする。関数f(x)=2X^2-3(a+2)X^2+12aXが極値をもつとき』 (1)aが満たすべき条件を求めよ。 (2)f(x)の極大値が32となるとき、aの値を求めよ。 なんですが、自分の答としては…極値があるなのでD/4>0を使い、a<0、2<aしたのですが、解答はa≠2になっていました。 自分の解答『a<0、2<a』でもよろしいですか? あと(2)なんかの場合は、(1)で出したaの値の範囲をそれぞれ別で求めればいいだけですか?

  • 三次関数の問題です

    関数F(x)=Xの3乗-3(a-1)Xの二乗-12aX(aは実数の定数)のついて、F(X)の極大値M(a)のグラフをかけ。 という問題がどうしても解けません。緊急を要しています。誰か助けてください。

  • 微分の関数の値の増減の問題です。

    関数f(x)=x^3-3ax^2+3x-4について、次の問いに答えよ。 (1)f(x)の値が常に増加であるように、aの値の範囲を定めよ。 (2)f(x)が極値をもつようにaの値の範囲を定めよ。 という問題で解説に (1)すべてのxについて、f`(x)≧0 f'(x)=3x^2-6ax+3だからf`(x)=0の判別式をDとすると、D=36a^2-36≦0より、-1≦a≦1 と書いてあります。 なぜD=36a^2-36≦0になるのかがどうしても理解できません。 (2)も 極値をもつためにはD>0であればよい とあって、なぜなのか・・・・とない頭と回転させましたがわかりませんでした。どなたか解説をお願いします。

  • 三次関数の問題です

    解答を教えてください!よろしくお願いします。 kは定数とする. f(x)=2x^3+3kx^2-6x-2kはx=αで極大値をとり、x=βで極小値をとるとする. (1)αβの値を求めよ.またα+βをkを用いて表せ。 (2)f(x)を(1/6)f’(x)で割った余りを求めよ. (3)f(α)f(β)をkを用いて表せ. (4)f(x)=0は異なる3個の実数解をもつことを示せ. よろしければ解答を教えてください! よろしくお願いします。

専門家に質問してみよう