• ベストアンサー
  • 困ってます

三次関数の問題です。

一応自分でもやってみたのですが、途中でわからなくなりました。 次の問題です。 Θは0°<=Θ=>90°を満たす定数角とする。三次関数 F(x)=x^3-(3cos^2Θ)x^2+(3cos2Θ)x が極値を持ち、極大値をMとおくとき、次の各問いに答えよ。 (1) Θのとり得る値の範囲を求め、MをΘで表せ。 (2) (1)の範囲でΘを変化させるとき、Mのとり得る値の範囲を求めよ。 です。よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#598
noname#598

F’(x)=3x^2-2(3cos^2Θ)x+3cos2Θ    =3{x^2-2(cos^2Θ)x+cos2Θ} cos^2Θ=(1+cos2Θ)/2より、    =3{x^2-(1+cos2Θ)x+cos2Θ}    =3(x-1)(x-cos2Θ) F(x)が極値を持つためには、 方程式F’(x)=0が異なる2つの実数解をもつ。 すなわち、cos2Θ≠1 よって、0°<Θ≦90° また、この条件では、cos2Θ<1より、(増減表省略) x=cos2Θのとき極大となる。 M=(cos2Θ)^3-(3/2)*(1+cos2Θ)(cos2Θ)^2+3(cos2Θ)^2  =(1/2)*(cos2Θ)^2*(3-cos2Θ) (2) cos2Θ=tとすると、0°<Θ≦90° より -1≦t<1 M=(1/2)*(3t^2-t^3) 両辺をtで微分すると、 M’=(3t/2)(2-t) t=-1のときM=2 t=1のときM=1(最大値なしの状態が避けられることの確認) t=0のときM=0 これと増減表(略)より、 0≦M≦2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

早速のお答えありがとうございました。こんなにシンプルに解けるなんて思ってもいませんでした。ありがとうございました。

関連するQ&A

  • 数学「微分法」の問題が分りません。教えてください。

    (1)kは定数とします。3次関数f(x)=-x^3+kx^2-3kx-2があります。(途中式もお願いします。) (1)f(x)が極値をもつようなkの値の範囲を求めてください。 (2)f(x)が単調に減少する関数となるようなkの値の範囲を求めてください。 (2)関数f(x)=x^3+ax^2+xが0<x<1の範囲で極大値と極小値をもつように、定数aの値の範囲を定めてください。(途中式もお願いします。) ちなみに答えは、 (1)(1)k<0、9>k (2)0≦k≦9 (2)-2<a<-√3 です。

  • 微分の得意な人、おねがいします(高校レベル)

    問)関数f(x)=3ax+cos2xが極値をもつように、定数aの値の範囲を定めよ。 これがa≦-2/3,a≧2/3のときは極値をもたないということまではわかります。が、-2/3<a<2/3のときf´(x)に-π/4,π/4を代入し、中間値の定理を使い、f´(x)=0を求めるのですが。ここで-π/4,π/4がどこからきたのかわかりません。ただテキトーに代入したのでしょうか?おねがいします。

  • 2変数関数の極値を求める問題について

    微分積分の回答をお願いいたします。 関数z=f(x,y)=x^3-3xy+y^2について次の問いを求めよ 1、z=f(x,y)の偏導関数を計算し、極値の候補を求めよ、 2、z=f(x,y)の第二次偏導関数を計算し、上で求めた候補が極値かどうか求めよ、 また、極値ならば極大か極小か吟味せよ。 回答をお願いいたします。

  • 2次関数の問題です。

    どなたか答えと解き方を教えてください。 kを定数とする。2次関数 f(x)=x^2-(k+1)x+k-1について次の各問いに答えよ。 (1)y=f(x)のグラフの頂点を求めよ。 (2)x≦0のとき、つねにf(x)>0となるようなkの値の範囲を求めよ。

  • 三次関数の問題です。教えて下さい。

    3次関数f(x)=xの三乗-(a+3)xの二乗+3ax-2b(a,bは定数)があり、 f′(2)=-3を満たしている。 関数f(x)の極大値をM、極小値をmとする。M-2m=7であるときのbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。の部分 の考え方と解き方が分かりません・・ 詳しい解説を書いていただけると嬉しいです。 よろしくお願いします。

  • 極値をとるa,bを求める問題について教えてください

    関数f(x) = x / (x^2 + ax + b) がx=1で極大値1/2 をとるという。 このとき定数a,bの値を求めよ。 この問題が全然わかりません。 極値を求めろ ということは微分してf '(x)を求めて、 それが1/2になるようにすればいいのでしょうか?

  • 至急 問題解説お願いします

    こんばんは。 タイトル通りですが、以下の問題の解説をお願いします。途中式なども省かず示していただけるとありがたいです。 (1)3次関数 y=2x^3–3x^2+3ax(aは実数の定数)がx=α、x=βでそれぞれ極大値、極小値をとるとき、次の問に答えよ。  (ア)αの値の範囲を求めよ。  (イ)α+β、αβの値を求めよ。  (ウ)f(x)の極大値と極小値の値の和が0であるとき、aの値を求めよ。 (2)関数f(x)=2x^3+9x^2+6x–1はx=(   )で極小値(   )をとる。 ちなみに回答は、 (1)  (ア)a<1/2  (イ)α+β=1、αβ=a/2  (ウ)a=1/3 (2)順に、[–3+√5]/2、[7–5√5]/2 です。よろしくお願いします!

  • 数学「微分法」の問題が分りません。教えてください。

    (1)aは0以上の定数です。このとき、関数y=x^2(x-a)の極値を求めてください。(途中式もお願いします。) (2)関数f(x)=ax^3-3ax^2+b (1≦x≦3)の最大値が8、最小値が-4であるとき、定数a、bの値を求めてください。ただし、a<0とします。 (途中式もお願いします。) ちなみに答えは、 (1)a=0のとき極値を持たない、a>0のとき極大値0(x=0) 極小値-4a^3/27(x=2a/3) (2)a=-3、b=-4

  • 微分の関数の値の増減の問題です。

    関数f(x)=x^3-3ax^2+3x-4について、次の問いに答えよ。 (1)f(x)の値が常に増加であるように、aの値の範囲を定めよ。 (2)f(x)が極値をもつようにaの値の範囲を定めよ。 という問題で解説に (1)すべてのxについて、f`(x)≧0 f'(x)=3x^2-6ax+3だからf`(x)=0の判別式をDとすると、D=36a^2-36≦0より、-1≦a≦1 と書いてあります。 なぜD=36a^2-36≦0になるのかがどうしても理解できません。 (2)も 極値をもつためにはD>0であればよい とあって、なぜなのか・・・・とない頭と回転させましたがわかりませんでした。どなたか解説をお願いします。

  • 導関数の応用 

    数学II 導関数の応用 f(x)=2x^3-3(a+2)x^2+12aとする。 (1) f(x)が極値を持つとき、定数aの値の範囲を求めなさい。 (2) (1)のときのf(x)の極値を求めなさい。 (3) f(x)の極小値0をもつように、定数aの値を定めなさい。 という問題で、(1)は解けました。答えは、a<2,a>2となりました。 しかし、(2)以降の解き方がわかりません。 教えてください。お願いします。