• 締切済み
  • すぐに回答を!

確率解析等 3

解法がわかりません f:[0,1]→Rを[0,1]上連続関数とする。また、Xi(i=1,...,n)を独立でB(1,p)に従う確率変数、つまり、P(Xi=1)=p、P(Xi=0)=1-p (0≦p≦1)とし、Sn=(X1+···+Xn)/nとおく。このとき、次の問いに答えよ。 (1) 確率変数f(Sn)の期待値は多項式P_n(x)を用いてE[f(Sn)]=P_n(p)と表される。多項式P_n(x)をnとfを用いて表せ。必要ならばX1+···+XnはB(n,p)に従う確率変数であることを用いよ。 (2) 任意のε>0に対して、P(|Sn-p|≧ε)≦1/(nε^2)となることを示せ。 (3) fは有界閉集合[0,1]上の連続関数だから有界である。そこで、 sup_{x,y∈[0,1]} |f(y)-f(x)|≦M<+∞ δ(c) =sup_{|x-y|≦c} |f(y)-f(x)| とおく。このとき、任意のc>0に対して、次の不等式を満たすことを示せ。 |E[f(Sn)]-f(p)|(=|E[f(Sn)]-f(p)|≦E|f(Sn)-f(p)|)≦δ(c)+M/(nc^2) (4) fは[0,1]上の一様連続関数だから、lim_{c→0} δ(c)=0となる。この事実を用いて、 lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)|=0 を示せ。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
noname#227064
noname#227064

(1) B(n,p)の確率関数はわかりますか? この回答では具体的には書かず、 P(nSn = k) = g(k;n,p) とします。 E[f(Sn)] = E[f(nSn/n)] = Σ_{k=0}^n f(k/n)g(k;n,p) だから P_n(x) = Σ_{k=0}^n f(k/n)g(k;n,x) となります。 あとは、g(k;x)をn,k,xで具体的に表せば良いだけです。 (2) P(|Sn-p|≧ε)にチェビシェフの不等式を適用すると P(|Sn-p|≧ε) ≦ p(1-p)/(nε)^2 これ以上は書かなくても良いですよね? (3) (1)と同様にnSnの確率関数をgとします。 E|f(Sn)-f(p)|)= Σ_{k=0}^n |f(k/n)-f(p)|g(k) = Σ_{|k/n-p|≦c} |f(k/n)-f(p)|g(k) + Σ_{|k/n-p|>c} |f(k/n)-f(p)|g(k) ≦ Σ_{|k/n-p|≦c} δ(c)g(k) + Σ_{|k/n-p|>c} Mg(k) ≦ Σ_{|k/n-p|≦c} δ(c)g(k) + Σ_{|k/n-p|≧c} Mg(k) ≦ δ(c) + M/(nc^2) 一つ目の不等式は sup_{x,y∈[0,1]} |f(y)-f(x)|≦M<+∞ δ(c) =sup_{|x-y|≦c} |f(y)-f(x)| から sup_{k/n,p∈[0,1]} |f(k/n)-f(p)|≦M<+∞ δ(c) =sup_{|k/n-p|≦c} |f(k/n)-f(p)| を使い、三つ目の不等式にはチェビシェフの不等式を使った。 (4) (3)の結果を使えば、 lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)| ≦ lim_{n→∞} sup_{x∈[0,1]} E|f(Sn)-f(x)| ≦ lim_{n→∞} sup_{x∈[0,1]} δ(c)+M/(nc^2) = lim_{n→∞} δ(c)+M/(nc^2) = δ(c) c→0の極限をとって、 lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)| ≦ 0 また、 lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)| ≧ 0 でもあるので lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)| = 0 となります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 確率変数

    明日試験ですので、ぜひお願いします。 確率変数X1,X2,...Xnは互いに独立で、分布は P(Xi=x)=|x|/12    x=-1,1,-2,2,-3,3 に従うとする。このとき lim 1/(n*n)E{f(X1+X2+...+Xn)}(nが無限大のとき)を求めよ。 ただし、f(x)=x^4   (x>=0)        x^2   (x<0) とする。

  • 確率の質問

    自分で考えた確率の問題なのですが、 解けずに困っています 「問題」 同じ連続確率分布f(x)に従う確率変数X1,X2,X3 がある。 確率変数Yを Y=Xi ( X1<X2<X3→Xi=X2, X3<X1<X2→Xi=X1, ... 真ん中の値をXiとする) とおくとき 確率変数Yの従う確率分布の平均と分散を求めなさい

  • 確率変数変換

    X1,X2,・・・,Xnが互いに独立な連続型確率変数であるとし、 Fi、i=1,・・・,nをXiの分布関数とすると、T=-2ΣlogFi(Xi) (Σはi=1からnまでです) これが自由度2nのカイ二乗分布に従うことを示せ。 色々試してみたのですが計算がぐちゃぐちゃになってしまい困っています。ヒントだけでもいいのでよろしくお願いします。

  • 連続型確率変数

    離散型確率変数Xの密度関数をf(x)とすると、あるxでf(x)の値は、その点での確率となりますが、Xが連続型確率変数の場合f(x)の値は何を示すのでしょうか? 連続型確率変数のf(x)の一点の値は0になるので、確率ではないですよね?でも、例えば、最尤推定量の考え方は、母集団からランダムサンプリングされたあるn個の標本の実現値x1,x2,・・・xnが得られる確率を最大にする母数を求めるというものですよね? そうすると、母集団が連続型の場合は不具合が生じないでしょうか? 回答宜しくお願いしますm(_ _)m

  • 大学の統計学です 確率母関数、ベルヌーイ分布、モーメント母関数

    明日試験なのですが、勉強不足で全然わかりません・・・・ ・2項分布B(n,p)の確率母関数を計算せよ ・幾何分布Ge(p)の確率母関数を計算せよ ・X1,X2....Xnを互いに独立でベルヌーイ分布に従うn個の確率変数とするとき、Sn=X1+X2+...+Xnの分布が2項分布となることを示せ またSn/nの平均値と分散を求めよ ・指数分布Exp(θ)のモーメント母関数、平均値(期待値)、分散を計算せよ ・2回のサイコロ投げにおいて、Xを最初の目、Yを2回目の目とするとき、Z=X+Y,W=X-Yとおく (1)ZとWの平均値を求めよ(2)ZとWの分散をもとめよ(c)ZとWの共分散を 求めよ ・X1,X2....Xnを互いに独立で同一の分布に従う確率変数とする。 E(Xi)=μ、V(Xi)=σ^2、i=1,....,nとしX1,X2....Xnの標本平均をZ=1/n(X1,X2....Xn)とおく。 E(Z)とV(Z)を計算せよ わかる方教えていただけたら嬉しいです!!!! よろしくお願いします。

  • 確率の問題で困っています

    こんにちは。 確率と統計の問題で苦戦しています。 問題は 当たる確率がp(0<p<1)のくじをn回引いたとき、あたりの出る回数を確率変数Xとする。 Xの期待値と分散、標準偏差を求めなさい。また、分散が(pの関数と見たとき)最大になるpの値を求めなさい。ただし、くじが当たる確率は互いに独立であるとする。 なお、i回目に引いたくじの結果を確率変数Xiで表すものとし、当たりであればXi=1、はずれであればXi=0とすれば、X=X1+X2+・・・+Xnである。 というものです。 毎回行き詰ってしまうので、模範解答をよろしくお願いします。

  • 関数解析と確率論の問題です。

    関数解析と確率論の問題です。 (Ω,F,P):確率空間 X_1、X_2:実数値確率変数 φ∈C^∞_0(R^2)(コンパクトな台をもつ∞回連続的微分可能な連続関数全体) とすると E[|φ(X_1、X_2)|^2]<∞ を示せ。 ご回答お願いいたします。 関数解析を履修したことがありませんので、自力で解くことができませんでした。よろしくお願いします。

  • 解析学の問題です><

    「確率変数Xn,n=1,2,..,がΣ(n=1から∞まで)E[|Xn|]<∞を満たすとする。(1)Y=Σ(n=1から∞まで)|Xn|は可積分関数であることを示せ。(2)級数Σ(n=1から∞まで)Xnは概収束することを示せ。特に、lim(n→∞)Xn=0,P-a.s.である。(概収束)」 この問題なのですが、(1)について、各n=1,2,..に対してYn(x)=|X1(x)|+...+|Xn(x)|と置いて、Ynについて単調収束定理を用いたらできますか?? (2)について、絶対収束級数は収束することを用いてできますか?? 実際にやってもうまくいきません><アドバイスお願いします><

  • ベルヌーイ分布における独立な確率変数とは?

    統計学の問題についてです。 【問題】 次式の確率関数f(x)をもつベルヌーイ分布に従う、 互いに独立なn個の確率変数Xi(i=1,2,…,n)がある。 以下の問に答えよ。   f(x)={p(x=1),1-p(x=0)}ただし0≦p≦1 確率変数Xiの期待値と分散を求めよ。 問題を解こうとしたのですが、確率変数Xiがよくわかっていません。 ベルヌーイ分布はB(1,p)で、取りうる確率変数は0か1の2つであるのに 「互いに独立なn個の確率変数Xi(i=1,2,…,n)」について考えるというのは どういう意味なのでしょうか? 概念的なものが全然理解できていませんので、その辺りも踏まえて 回答をしていただけたらと思っています。よろしくお願いいたします。

  • 数学(数理統計学)の問題です。

    数学(数理統計学)の問題です。 実数値確率変数列X1,X2,X3,.....,Xn,...は独立で、平均θ分散1を持つとする。Xnのバー=1/nΣ[i=1~n] {Xi}とおく。 (1)統計量(Xnのバー)^2がθ^2の不偏推定量かどうかを調べ、不偏でない場合にはθ^2の不偏推定量をひとつ構成せよ。 (2)確率変数Y,Zと任意のε>0,δ>0に対して、以下の不等式を示せ。P(|(YZ)>ε,|Y|≦δ)≦(δ^2/ε^2)*E[Z^2] (3)任意のε>0に対して、lim(n~∞)P(|(Xnバー)^2-θ^2|>ε)=0が成り立つことを示せ。