• 締切済み
  • すぐに回答を!

2次関数の平行移動。の者です。

点QはF上にあるから Y=2X2 この式のXにxー3を、Yにyー4を代入すると、yー4=2(xー3)2 何ですが、あくまでも、xー3,yー4は其々、X,Y、つまり、 X=xー3,Y=yー4 なのですから、 Y=2X2 を成り立たせる、放物線Fの方程式が、 yー4=2(xー3)2 の様な気がして成りません。 僕の何処が、数学的に、間違った考えなのでしょうか?

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • ninoue
  • ベストアンサー率52% (1288/2437)

数式は正しく書かないと意味が通じませんよ。 Y=2X2 は 2 X 2 = 2 * 2 = 4 等と解釈され、間違い判定されかねません。 Xの2乗の2倍を示したいのであれば、  2X^2, 2X**2 (, 2*X**2) 等と書くようにして下さい。 "数式の書き方" 等とサーチして調べてみて下さい。 ==> http://www.su-gaku.jp/suken_bbs/form.html 数式の書き方 その他、次等も参考に頑張って下さい。 http://okwave.jp/qa/q8799380.html お金をかけないで勉強する方法

共感・感謝の気持ちを伝えよう!

質問者からのお礼

有難う御座居ました。

  • 回答No.1

続きの質問は削除対象です。 元の質問にはすでに回答が付いてるので、その質問にお礼あるいは補足を使って上記内容を書いて下さい。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

有難う御座いました。

関連するQ&A

  • 改めて、2次関数の平行移動。

    皆様宜しくお願い申し上げ致します。 2x2は、2xの2乗と理解して頂きたく思います。 昨日大変親切な方から解答を頂いたのですが、説明が数式ばかりで高校生の僕には結局理解出来ませんでした。 僕の数学的経験が浅いのが原因だと思います。 質問をさせて頂きます。 以下の文章は、数研の日本一難しい教科書の一節です。 放物線y=2x2をFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gの方程式が y=2(x-3)2+4 すなわちy-4=2(x-3)2 になることは、既に学んだ。 此処までは理解出来ております。 このことは、次のように考えてもわかる。 以下の文章が僕には理解出来ません。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点を Q(X,Y)とすると x=X+3, y=Y+4 すなわち X=x-3,Y=y-4 点QはF上にあるから Y=2X2 この式のXにx-3を、Yにy-4を代入すると y-4=2(x-3)2 此処までは理解出来ます。 僕の考えでは、 点Q(X,Y)はあくまでも放物線F上にあるから、 Y=2X2 此処で、 X=x-3,y=y-4を、グラフF上の点Q(X,Y)に代入するのだから、代入し終わった 点Qの座標は、(x-3,y-4) 改めて、点QはグラフF上にあるのだから、 グラフFの方程式、 y=2x2 に、グラフF上の点Q(x-3,y-4)を代入するのだから、 y-4=2(x-4)2は放物線Fの方程式 と考えてしまいます。 教科書の記述では、 これは放物線Gの方程式である。 と書いて有ります。 何処が僕の数学的論理が間違っているのでしょうか? 何方か、数式だけで無くて、日本語も含めて説明して頂けると有り難いです。 是非是非宜しくお願い申し上げ致します!

  • 2次関数の平行移動。

    教科書数学1の記述です。 放物線y=2x2をFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gの方程式が、 y=2(xー3)2+4 すなわち y-4=2(xー3)2 になることは、既に学んだ。 此れの記述の意味は分かります。 このことは、次のように考えてもわかる。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点を Q(X,Y)とすると x=X+3,y=Y+4 すなわちX=x-3,Y=yー4 点QはF上にあるから Y=2X2 この式のXにx-3を、Yにyー4を代入すると yー4=2(xー3)2 これは放物線Gの方程式である。 の、記述の意味がイマイチ何を言いたいのか良く分かりません。 多分、G上の任意の点P(x,y)の、任意、と言う言葉がヒントに成ってる様な気がします。 何か、キツネに騙された様な気がして、頭の中が、スッキリしません。 何方か、僕の頭の中をスッキリさせてくれる様な回答を宜しくお願い申し上げ致します!

  • 放物線の平行移動

    僕は今年高校に入った新入生です。分からないことがあるのでここに書かせていただきます。 数研出版の数学1には下記のようなことが書かれています。 * XXはXの平方ということです。 「放物線y=2xxをFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gはy-4=2(x-3)(x-3)になる。 それは次のように考えても分かる。 G上に任意の点P(x,y)をとり上で述べた平行移動によって移されるF上の点をQ(X,Y)とすると x=X+3 y=Y+3 すなわちX=x-3 Y=y-4 点QはF上にあるからY=2XX この式のXにx-3をYにx-4を代入するとy-4=2(x-3)(x-3) これはGの方程式である。」 まず前提としてFとGの方程式やグラフは異なることは明確です。 しかしFの方程式 Y=2XX にX=x-3 Y=y-4を代入すると y-4=2(x-3)(x-3) つまりGの方程式になります。 このままではこの二つは同じ方程式ということで重なった放物線になってしまいます・・・。どこが間違っているのでしょうか。ご指摘をお願いします。

  • 放物線の平行移動についてちょっとした思い込みをしてるみたいです。

    放物線の平行移動についてちょっとした思い込みをしてるみたいです。 『放物線y=2x^2をFとする。Fをx軸方向に3、y軸方向に4だけ平行移動して得られる放物線をGとする。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点をQ(X,Y)とすると x=X+3、y=Y+4 すなわち X=x-3、Y=y-4 点QはF上にあるから Y=2X^2 この式のXにx-3、Yにy-4を代入すると y-4=2(x-3)^2 これはGの方程式である。』 と数Iの教科書に書いてあります。 ちょっと疑問があります。 Q(X,Y)のXはx-3、Yはy-4と表してあります。 つまりQ(x-3,y-4)です。 QはF上の点です。 しかしY=2X^2にQを代入したらGっていうのに疑問を感じます。 Gは y-4=2(X-3)^2です。 しかしGは点Qを通ってません。 つまり、QはF上の点だから、Fの方程式になるんじゃないか?と思い込みをしてしまいます。 なんでですかね? まあ、FはすべてのXとYについて成り立ちます。つまり、Fの放物線を表す式はXとYが含まれていて、xとyは含まれない。 Gはすべてのx、yについて成り立ちます。つまり、Gの放物線を表す式はxとyが含まれていて、XとYは含まれない。 故に、求められた式はxとyの関係式であるからGの方程式である。 という解釈は大丈夫ですかね?

  • 二次関数の平行移動

    二次関数の平行移動 理解できないところがたくさんあります。 ほとんど教科書丸写しなのですが 二次関数 F…y=x^2 を x軸方向にp, y軸方向にq だけ平行移動して 得られる二次関数G上に任意の点P(x,y)をとり、 平行移動前のF上の点Qを(X,Y)とすると x=X+p , y=Y+q → X=x-p , Y=y-q よって 点Q(x-p,y-q)で表される。 これをFの式に代入して y-p=(x-p)^2  → y=(x-p)^2+q これはGの式である。 ----------------------------------- (1)なぜ元の二次関数Fの点ではなく 動いた後の二次関数Gの点を(x,y)と基準?としているのかがわかりません。 「そうすると説明が上手くいくから」でしょうか? 平行移動する前を基準として考えれば 平行移動後が(x+p,y+q)になるじゃん!と思ってしまいます…;; (2)F上の点Qの座標をFの式に代入した式なのに なぜGの式になるのかがわかりません。 あと…… 任意という言葉の意味がいまいちわかりません。 その言葉の効果はどこで現れますか?? いってることが全ておかしかったらすみません。 理解力がほとんどありません。 よろしくお願いします。

  • 2次関数の平行移動の証明

    どうしても納得できないので質問させていただきます。 2次関数y=ax^2をx軸方向にp、y軸方向にqだけ平行移動した放物線の方程式が y-q=a(x-p)^2 であらわされることを証明せよ。という問題なのですが、証明は 点(x,y)をx方向にp、y方向にqだけ平行移動した点を(X,Y)とおくと、 X=x+p Y=y+q が成り立ち、これを変形すると x=X-p y=Y-q となるので、この式をy=ax^2に代入すると Y-q=a(X-p)^2 ゆえに求めるものはy-q=a(x-p)^2 となっているんですが、最後の Y-q=a(X-p)^2・・・(*1) が y-q=a(x-p)^2・・・(*2) に変換される理由がよくわかりません。こちらの解釈では、 (*1)が表すのは平行移動前の放物線を(X,Y)を使って言い換えた式。 (*2)も同じように考えてy-q=Y、x-p=Xすなわちy=Y+q、x=X+q、なのでY=aX^2という式を平行移動したという式になるのではないか、 という感じです。わかりにくいかもしれませんが、自分でもよく説明できずにいます。 なんかすごい根本的なことを勘違いしてるような気がして不安です。どなたか説明していただきたいです。

  • 関数・平行移動・軌跡 (高校数学1)

     こんにちは。高校数学1 関数に関する問題集中の問題の解答の解説に関連して質問します。 問題:  「放物線Y=X^2を点(1,2)を通るように並行移動した放物線全体を考える。  このような放物線の頂点Vの描く軌跡を求めよ。」 解答:    「放物線Y=X^2 …(1) を  X軸方向にp、Y軸方向にqだけ並行移動しものは、方程式    Y-q=(X-p)^2 …(2)  で表される。  放物線(2)が点(1,2)を通るための条件は    2-q=(1-p)^2  すなわち q=-(p-1)^2+2  が成り立つことである。  さて、放物線(2)の頂点Vの座標は    V(p、q)  であるから、p、qが条件(3)を満たして変化するときのV(p、q)の軌跡が求めるものである。  よって、Vの軌跡は    Y=-(X-1)^2+2 …(4)   で表される放物線である。」 質問→ (4)に関して、V(p、q)の軌跡     q=-(p-1)^2+2   をどういう理由で    Y=-(X-1)^2+2  に置き換えたのかがよく分かりません。分かる方がいらっしゃいましたら、もう少し詳しい解説をお願いします。

  • 二次関数 平行移動証明

    二次関数F:y=x^2をx軸方向にp、y軸方向にq平行移動して得られる二次関数G上の任意の点を(x,y)とすると平行移動前は(x-p,y-q)で表されこれはF上の点であるから代入してy-q=(x-p)^2⇔y=(x-p)^2+q F上の点であるから代入して上式が得られるのはわかるのですが なぜこれがGの式を表わすのか分りません。 教えてください。お願い致します。

  • グラフの平行移動について

    y=mxを、x軸方向に2,y軸方向に3、平行移動したあとのグラフがy-3=m(x-2)になるのですか? この質問にこのような回答がありました。 移動後の方程式Y=f(X)の点を(a,b)とすると 移動前の方程式y=f(x)を満たす点が(a-2,b-3)となる。よってx,yに代入してb-3=m(a-2)が成り立つ。 従ってy-3=m(x-2) ここで質問なのですが、移動前の方程式に移動前の点を代入したらそれは移動前の方程式じゃないのですか?(a-2,b-3)は移動前の方程式の通る点だし、代入した方程式y=f(x)も移動前のものです。なのに移動後の方程式になるっていうのは納得できません。理解力がないのです。本当に困ってます助けてください

  • 2次関数の平行移動

    「2次関数y=-2X^2+X-2のグラフを平行移動したもので、次の条件を満たす放物線の方程式を求めよ。条件:X軸に接し、点(1、-8)を通る」という問題で、2次関数の基本形を利用しようと思い、“y=-2(X-p)^2”とおき、これに点(1、-8)を代入して解いてみたのですが、解説だとy=-2(X+k)^2とおいていました。kの記号がプラスになっていても大丈夫なのですか?基本形では-pなので、-kとすべきではないのでしょうか? 宜しくお願いします。