• ベストアンサー

指数三角関数を含む定積分について

皆様よろしくお願いいたします。 下記定積分の導き方が分かりません。 (1/π)・∫[0→∞] {exp(-xt)・sin(a√x)/x}dx=erf(a/√(4t)) ここでerfはガウスの誤差関数erf(y)=(2/√π)・∫[0→y]exp(-z^2)dzです。 途中経過も含めてご教示頂けると助かります。 よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

(1/π)・∫[0→∞]{exp(-xt)・sin(a√x)/x}dx=erf(a/√(4t)) (erf(y)=(2/√π)・∫[0→y]exp(-z^2)dz) t>0の前提で考える・・! √x = yと置くと、与式は ∫[0→∞]{exp(-xt)・sin(a√x)/x}dx = ∫[0→∞]{exp(-ty^2)・sin(ay)/y^2}(2ydy) = 2・∫[0→∞]{y・exp(-ty^2)・sin(ay)/y^2}dy = 2・∫[0→∞]{exp(-ty^2)・sin(ay)/y}dy・・・(0) ・・・となる。 今、J =∫[0→∞]{exp(-ty^2)・cos(ay)}dy・・・(1) なる積分を考える。 Jをaに関して微分すると dJ/da =-∫[0→∞]{exp(-ty^2)・y・sin(ay)}dy = [(1/2t)・exp(-ty^2)・sin(ay)]|[y=0→∞]-(1/2t)・∫[0→∞]{exp(-ty^2)・cos(ay)}dy = -(1/2t)・J ∴dJ/J = -(1/2t)da logJ = -a^2/4t J = C・exp(-a^2/4t) (C:積分常数) Cを求めるためa = 0とすると(1)からC =∫[0→∞]{exp(-ty^2)}dy = (1/2)・√(π/t) 従って J = (1/2)・√(π/t)・exp(-a^2/4t)・・・(2) よって(1)からJをを0からaまで積分し、(2)を考慮して ∫[0→a]{J}da =∫[0→∞]{exp(-ty^2)・sin(ay)/y}dy =(1/2)・√(π/t)・∫[0→a]{exp(-a^2/4t)}da =(1/2)・4√(t/π)・erf(a/√(4t)) = 2√(t/π)・erf(a/√(4t)) 従って(0)より (1/π)・∫[0→∞]{exp(-xt)・sin(a√x)/x}dx =(2/π)・∫[0→∞]{exp(-ty^2)・sin(ay)/y}dy (1/2)・√(π/t)・2√(t/π)・erf(a/√(4t)) = erf(a/√(4t))

mathstudy
質問者

お礼

ご回答いただきありがとうございます。 ご丁寧な解説で大変助かります。 三角関数の性質を利用して微分方程式を立てて解く方法は目から鱗でした。 芸術的な数学を見た気がしました。 ありがとうございました。

関連するQ&A

  • 誤差関数を含む積分

    以下の積分を行いたいのですが、誤差関数を含んでいるので、どのように計算をしたらよいのか分かりません。計算方法を教えてください。(簡単な途中式もあると助かります) ∫[x:0->∞] erf(X/A)exp(-(X-B)^2/C)dX よろしくお願いします。

  • 指数関数と三角関数の積の積分

    ∫sin(ax)exp{-b(x-c)^2}dx, 積分範囲[-∞, ∞] ∫cos(ax)exp{-b(x-c)^2}dx, 積分範囲[-∞, ∞] これらの定積分はどうやって計算すればいいのでしょうか? 数値計算ではなくて、不定積分を導いて計算する方法を知りたいです。

  • 複素積分

    I1=∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxを複素積分を使って求めます。 まず ∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxの被積分関数の分子にi*sin(a*x)を (iは虚数単位)を加えても加えた部分が奇関数でかわらないので加え ると ∫[-∞,-∞]{cos(a*x)+i*sin(a*x)}/(x^2+b^2)dxとなります するとI=∫[-∞,-∞]exp(i*a*x)/(x^2+b^2)dxです。 ここで複素積分 I=∫exp(i*a*z)/(z^2+b^2)dz (積分路は実軸と虚軸の正の部分を通る 反時計回りの半径Rの半円) またI2=∫exp(i*a*z)/(z^2+b^2)dz (積分路は虚軸の正の部分のみを通 る反時計回りの半径Rの半円)を考えるとRが十分大きいとき I=I1+I2・・・(1)になります。 Iは留数定理よりI=2*π*i*Res[f,i*b]=π*exp(-a*b)/b・・・(2) I2はz=R*exp(i*θ)とおき I2=∫[0,π]exp(i*a*R*exp(i*θ))/(R*exp(i*θ)^2+b^2)dθ =∫[0,π]exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)/(R^2*exp (2*i*θ)+b^2)dθ 三角不等式より 0<|I2|<∫[0,π]|exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)|/|(R^2*exp(2*i*θ)+b^2)|dθ<π*R*exp(-a*R*sinθ)/|-R^2+b^2|・・・(3) ここでsinθ >0よりでexp(-a*R*sinθ)<1なので π*R*exp(-a*R*sinθ)/|-R^2+b^2|<π*R/|-R^2+b^2|となり π*R/|-R^2+b^2|はR-->∞で0なので結局 |I2|-->0   なので(1)より I1=π*exp(-a*b)/bが答えです。  これはわかるのですが、スタートで i*sin(a*x)ではなく-i*sin(a*x)を加えても変わらないですよね? そこで-i*sin(a*x)を加えて実際にやってみると (2)の部分はπ*exp(a*b)/bに変わってしまい、また (3)の部分はπ*R*exp(a*R*sinθ)/|-R^2+b^2|となってしまいこれでは R-->∞で発散するように思えます。 どこがまちがっているのでしょうか

  • 偶関数、奇関数の積分

    定積分で 関数f(x)が奇関数なら ∫[-a→a]f(x)dx=0 偶関数なら ∫[-a→a]f(x)dx=2∫[0→a]f(x)dx というものがありますが、 偶関数のとき∫[-a→a]f(x)dx=2∫[0→a]f(x)dx これが0になることはありえますか?

  • 陰関数と偏微分

    1)z^x=y^zで表される陰関数zx,zyを求める上でどうすればいいのか分かりません。 2)以前x^2+y^2+z^2+2x+2y+2z=0で表される陰関数のzxを求めなさいという問題での疑問を出したところz^2をxで偏微分したときに2・z・zx 、y^2をxで偏微分すると0になると返ってきたのですが、どうして0になるのでしょうか? 2y・yxとなるならわかるのですが。またz=の形にしてからという答えもあったのですが、それは(z+1)^2に平方完成してから√にしてやれって事でしょうか?答えがぜんぜんちがったものですから。 3)x^2+y^2+z^2=a^2,x^2+y^2=2ax で陰関数のdy/dx,dz/dxをもとめさせるもんだいがあったのですが、dy/dxをもとめるうえで、fyとfxをもとめたわけなんですが、後の式を使えばでますが、前の式は何に使うのでしょう。dz/dxをもとめるうえで、fz、fxを求めようとしたのですが、fz=2z fy=2yとやってはいけないのですか?しかも答えにはaがでてきました。

  • 自然対数と三角関数の積分

    ∫exp(1/cos(x))dxと ∫exp(1/sin(x))dxが分からなくて困っています。 どなかた教えていただけますでしょうか? よろしくお願いします!

  • gaussの誤差関数って

    gaussの誤差関数って 私、数学が苦手でお詳しい方いましたら教えてください。 ある専門書を読んでいたら X=0.2 Y=5.65X=1.13 erf(Y)=0.87 とありましたerfがgaussの誤差関数と言うことまでは分かったのですが、erf(Y)を具体的にどのように 計算したのか全く理解できずに困っています。  数学がお得意の方いましたら、教えて下さい。

  • 指数関数の積分なのですが、、、

    指数関数の積分なのですが、、、 ∫a・exp(-ax)dx を積分したいのですができません。 どうか、おしえてください。

  • 完全形でない3変数関数の微分方程式の解法

    全微分方程式A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz=0がある。この式をPとおく。ここで、ベクトル値関数f=[A,B,C]とおき、f・(rotf)=0となるならばPは積分可能でその一般解は下記の手順により求まる。 手順1:Pについてdz=0とすると、Adx+Bdy=0となる。この式をQとおく。これが(∂A/∂y)=(∂B/∂x)を満たすとき、また満たさないときは積分因子μをかけることによりこのQの一般解ξ(x,y,z)=E (Eは定数)が得られる。 手順2:Pの両辺にλをかけたものの一般解を求める。するとλAdx=(∂ξ/∂x)となる。これから、λの値を求める。 手順3:ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzとなり、このうち(∂ξ/∂x)dx+(∂ξ/∂y)dyはλAdx+λBdyとなるが、最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。 dξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzと(∂ξ/∂x)dx+(∂ξ/∂y)dy=λAdx+λBdyより、λAdx+λBdy=dξ-(∂ξ/∂z)dzとなる。 するとPの両辺にλをかけた式は、λAdx+λBdy+λCdz=dξ+{λC-(∂ξ/∂z)}dz=0となる。 ここで、λC-(∂ξ/∂z)=ηとおくと、λAdx+λBdy+λCdz=dξ+ηdz=0となり、2変数の全微分方程式dξ+ηdz=0が得られる。この解が結局全微分方程式Pの一般解となる。 ここで質問です。 手順1でdz=0とした式Adx+Bdy=0 (∂A/∂y)=(∂B/∂x)、またはμAdx+μBdy=0 (∂μA/∂y)=(∂μB/∂x)を解くとこの一般解、ξ(x,y,z)=Eが得られ、この関数ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=Adx+Bdy=0、またはdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=μAdx+μBdy=0になるのが分かります。 手順2,3でλAdx+λBdy+λCdz=0という式が出てきますが、これはλをかける事により完全形になっていると思われます。しかしなぜλAdx=(∂ξ/∂x)となるのかが分かりません。ξはAdx+Bdy=0の解として現れる関数なので、λAdx+λBdy+λCdz=0を満たす関数は別にあり、例えばこれをσとすると、この関数の全微分はdσ=(∂σ/∂x)dx+(∂σ/∂y)dy+(∂σ/∂z)dz=λAdx+λBdy+λCdz=0となり、λAdx=(∂σ/∂x)dxとなるのではないのでしょうか? それともこの関数σがξと一致すると仮定しているのでしょうか? それからもう1つ気になるのですが、手順3で「最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。」とありますが、これもよく意味が分かりません。なぜ(∂ξ/∂z)dzだけλRdzとはなるか分からないのでしょうか? おそらく私が根本的に間違っていると思いますので、詳しい方教えてください。お願いします。

  • 分布関数

    参考書の解説一部抜粋 F(x^2+y^2+z^2)=F(x^2)F(y^2)F(z^2)のとき、この式の関係は exp(a+b+c)=(e^a)(e^b)(e^c) のように満たされる。したがった、分布関数は F(x^2)=Aexp(-kx^2) の関数形となる。Aとkは定数 定数Aは規格化条件 ∫[-∞,∞]f(x)dx=1 となる。 F(x^2)=Aexp(-kx^2)を規格化すると A∫[-∞,∞]exp(-kx^2)dx=A(π/k)^(1/2)=1 A=(k/π)^(1/2) 質問 (1)なぜ、F(x^2)=Aexp(-kx^2)の関数形となるのですか? そもそも、なぜF(x^2+y^2+z^2)=F(x^2)F(y^2)F(z^2)のとき、この式の関係はexp(a+b+c)=(e^a)(e^b)(e^c)のように満たされるのですか? (2)なぜ、A∫[-∞,∞]exp(-kx^2)dx=A(π/k)^(1/2)=1となるのですか? πはどこからでてきたのですか?