• 締切済み
  • 困ってます

ラグランジュの未定乗数法

条件g(x,y)=0の下で、z=f(x,y)の極値を求める。 g(x,y)=0は、xとyの陰関数でありz軸に平行なある曲面を表す。 z=f(x,y)の全微分は、dz=(∂f/∂x)*dx+(∂f/∂y)*dyより、(dz/dx)=(∂f/∂x)*1+(∂f/∂y)*(dy/dx) dz/dx=f_x(x,y)+f_y(x,y)*(dy/dx) ここでzは、g(x,y)=0の条件によりxの1変数関数となっている。 一方、z=g(x,y)とすると、z=g(x,y)=0となり、これは恒等的に0である。よって、全微分もdz=(g_x)*dx+(g_y)*dy=0となる。 dy/dx=-g_x(x,y)/g_y(x,y) dz/dx=f_x(x,y)-[{f_y(x,y)*g_x(x,y)}/g_y(x,y)] (x,y)=(a,b)の点で、この曲線が極値をもつとき、dz/dx=0となる。 dz/dx=f_x(a,b)-[{f_y(a,b)*g_x(a,b)}/g_y(a,b)] f_x(a,b)={f_y(a,b)*g_x(a,b)}/g_y(a,b) g_x(a,b)≠0のとき、両辺をg_x(a,b)で割り、{f_x(a,b)/g_x(a,b)}={f_y(a,b)/g_y(a,b)} ここで、{f_x(a,b)/g_x(a,b)}={f_y(a,b)/g_y(a,b)} =λとおくと、f_x(a,b)=λ*{g_x(a,b)}, f_y(a,b)=λ*g_y(a,b) このλが未定乗数である。 質問がいくつかあります。 まず、初めに条件になっている『g(x,y)=0はz軸に平行な曲面を表す』とあります。これは、z=g(x,y)=0とは違いますよね? z=g(x,y)=0はz=0なので、xy平面上の関数になり、z軸に平行な曲面にはならないと思うのですが。 次に、全微分可能な関数z=f(x,y)の全微分はdz=f_x(x,y)dx+f_y(x,y)dyと表され、これは∂z/∂x=f_x(x,y)+f_y(x,y*)(dy/dx)と表す事ができ、この左辺はzがxとyの2変数関数のためdz/dxとならずに∂z/∂xとなっています。この証明においてz=f(x,y)の全微分を求める際に『ここで、zはg(x,y)=0の条件により、xの1変数関数となっている』とありますが、これはどういう意味でですか? z=f(x,y)の曲面とg(x,y)=0の曲面が交わった所は曲線になるのは分かります。そしてこの曲線はxの値を一個定めると、それによってyの値が決まるので、zも決まる。よってzはxの1変数関数となるのでしょうか? そして、『z=g(x,y)とおくと、z=g(x,y)=0とおくと、これは恒等的に0。よって、その全微分もdz=(g_x)*dx+(g_y)*dy=0』とありますが、まずこの意味を簡単に説明していただけますか。『よって』の前後がどう繋がっているのが分かりません。『z=g(x,y)=0とおく』となっていますが、この場合z=g(x,y)=0は前述したようにxy平面上のグラフになると思うのですが、なぜg(x,y)=0をz=g(x,y)=0と置き換えたのかが分かりません。dy/dxの値を求めるためでしょうか? 自分の書いた所に、誤解やちんぷんかんぷんで意味が分からない所があれば指摘してください。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数303
  • ありがとう数0

みんなの回答

  • 回答No.2

>初めに条件になっている『g(x,y)=0はz軸に平行な曲面を表す』とあります。 >これは、z=g(x,y)=0とは違いま>すよね? z=g(x,y)=0はz=0なので、xy平面上の関数になり、 >z軸に平行な曲面にはならないと思うのですが。 g(x,y)=0 は方程式に z を含まないので z軸に平行な図形になります。 z = g(x,y) は g の形を3次元に描くときの式でしょう。f の束縛条件と混同しちゃいけません。 本題ではあくまで z を取って考えること。それに g の形を考えるのは x, y 平面上で十分です。 #xy平面上ではただの1個の曲線です。 >これは∂z/∂x=f_x(x,y)+f_y(x,y*)(dy/dx) このへんの議論はヘタクソですね。独立変数を入れ替えたりせずとも議論は展開できます。 というかそのための未定乗数法なので、対称性を崩したらいかんのですよ。話が無用に複雑化します。 ラグランジュの未定乗数法の肝は、2次元、1束縛に限定すると gの全微分=(∂g/∂x)δx + (∂g/∂y)δy=0 という条件下で fの全微分=(∂f/∂x)δx + (∂f/∂y)δy=0 という点を探すこと。 式の形を見ればわかるけど、ベクトル(∂g/∂x, ∂g/∂y)とベクトル(∂f/∂x, ∂f/∂y)は両方とも ベクトル(δx, δy) と直交するから、2次元だから ベクトル(∂g/∂x, ∂g/∂y)と(∂f/∂x, ∂f/∂y)は同方向(符号は逆かも) ってことなんだよね。 この幾何学的な理解が得られれば一足飛びに (∂f/∂x, ∂f/∂y)=λ(∂g/∂x, ∂g/∂y)⇒∂(f-λg)/∂x=0, ∂(f-λg)/∂y=0, ∂(f-λg)/∂z=0 これが未定乗数です。後はちょっとひねって h(x, y, λ) =f-λg とすれば ∂h/∂x=0, ∂h/∂y=0, ∂h/∂z, ∂h/∂λ=g=0 で解けることになります。 このやり方で話を簡単に多次元、多束縛へ拡張できます。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

> 『g(x,y)=0はz軸に平行な曲面を表す』 その曲面上の点(x,y,z)の集合をGとすると   G = {(x,y,z) | g(x,y)=0 } だということです。zには何の制限も付いていないから、z軸と垂直に切ると、どこで切っても断面は同じ。図形としてはz方向に無限に長いキンタローアメのようなものです。 > z=g(x,y)=0とは違いますよね? 仰る通り、別の話です。 > 『ここで、zはg(x,y)=0の条件により、xの1変数関数となっている』 ここも仰る通りです。  「条件により」ってのは、関数f(x,y)の定義域をGだけに限定する、という意味です。なので、xを決めるとそれだけで「(x,y,z)∈Gであるようなy」が限定される。  もっと具体的に「g(x,y)=0をy=…の形に解いたとすると」と考えると分かりやすいかな。そうするとyはxで決まる関数、つまりy(x)である。だから、z = f(x,y(x)) はxだけで決まる。(ゲンミツに言えば、xを決めても複数のyが(x,y,z)∈Gを満たしうるわけで、そこんとこもきちんと議論しないとまずいんですが。) > なぜg(x,y)=0をz=g(x,y)=0と置き換えたのか  このzは「z=f(x,y)」のzとは別物です。というのは、ここでは   (x,y,z)∈G ⇒ ∀λ( f(x,y) = f(x,y)+λg(x,y) ) の右辺第二項だけを取り出して話をしているから。 > 『よって』の前後がどう繋がっている  z=g(x,y)のとき、zは定数だからdzは0だ、というだけのこと。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 陰関数についての計算

    陰関数:f(x,y) = x^2 + xy + y^2 - 36 = 0 があって、 導関数:dy/dxを求める問題なのですが、 途中でつまづいてしまっているので質問させていただきます。 計算途中で2変数関数 の全微分df (x, y)を求め、それぞれdxとdyについてまとめることが小問としてあるのですが、dxとdyについてまとめろとはどういう計算をすれば求まるのでしょうか? 全微分はdf = (2x+y)dx + (x+2y)dyとなりここから どのように展開すればdxとdyについてまとめたことになるのでしょうか? 書籍では、全微分を求めた後、df=0として全微分を展開していき、 dy/dxを求めていて、途中でdx、dyについてまとめる過程は出てきていないので、書籍を参考にできずOKwaveで質問させていただきます。 よろしくお願いします。

  • 完全形でない3変数関数の微分方程式の解法

    全微分方程式A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz=0がある。この式をPとおく。ここで、ベクトル値関数f=[A,B,C]とおき、f・(rotf)=0となるならばPは積分可能でその一般解は下記の手順により求まる。 手順1:Pについてdz=0とすると、Adx+Bdy=0となる。この式をQとおく。これが(∂A/∂y)=(∂B/∂x)を満たすとき、また満たさないときは積分因子μをかけることによりこのQの一般解ξ(x,y,z)=E (Eは定数)が得られる。 手順2:Pの両辺にλをかけたものの一般解を求める。するとλAdx=(∂ξ/∂x)となる。これから、λの値を求める。 手順3:ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzとなり、このうち(∂ξ/∂x)dx+(∂ξ/∂y)dyはλAdx+λBdyとなるが、最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。 dξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy+(∂ξ/∂z)dzと(∂ξ/∂x)dx+(∂ξ/∂y)dy=λAdx+λBdyより、λAdx+λBdy=dξ-(∂ξ/∂z)dzとなる。 するとPの両辺にλをかけた式は、λAdx+λBdy+λCdz=dξ+{λC-(∂ξ/∂z)}dz=0となる。 ここで、λC-(∂ξ/∂z)=ηとおくと、λAdx+λBdy+λCdz=dξ+ηdz=0となり、2変数の全微分方程式dξ+ηdz=0が得られる。この解が結局全微分方程式Pの一般解となる。 ここで質問です。 手順1でdz=0とした式Adx+Bdy=0 (∂A/∂y)=(∂B/∂x)、またはμAdx+μBdy=0 (∂μA/∂y)=(∂μB/∂x)を解くとこの一般解、ξ(x,y,z)=Eが得られ、この関数ξの全微分はdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=Adx+Bdy=0、またはdξ=(∂ξ/∂x)dx+(∂ξ/∂y)dy=μAdx+μBdy=0になるのが分かります。 手順2,3でλAdx+λBdy+λCdz=0という式が出てきますが、これはλをかける事により完全形になっていると思われます。しかしなぜλAdx=(∂ξ/∂x)となるのかが分かりません。ξはAdx+Bdy=0の解として現れる関数なので、λAdx+λBdy+λCdz=0を満たす関数は別にあり、例えばこれをσとすると、この関数の全微分はdσ=(∂σ/∂x)dx+(∂σ/∂y)dy+(∂σ/∂z)dz=λAdx+λBdy+λCdz=0となり、λAdx=(∂σ/∂x)dxとなるのではないのでしょうか? それともこの関数σがξと一致すると仮定しているのでしょうか? それからもう1つ気になるのですが、手順3で「最後の(∂ξ/∂z)dzだけはλRdzとなるかは不明である。」とありますが、これもよく意味が分かりません。なぜ(∂ξ/∂z)dzだけλRdzとはなるか分からないのでしょうか? おそらく私が根本的に間違っていると思いますので、詳しい方教えてください。お願いします。

  • 媒介変数の極値と、曲線の全長の問題について教えてください。

    下記の問題の解き方がわかりません。 ---------------------------------------- x=exp(t)sin(t),y=exp(t)cos(t),(0≦t≦π/2)の表す、xy平面上の曲線Cがある。 (1)xの関数 y=f(x)の増減表を書き、極値を求めなさい。 (2)曲線Cの全長Lを求めなさい。 ------------------------------------------ (1)は普通に増減表を書くときのように、 dy/dx=(dy/dt)/(dx/dt)=0 となる、tを求め、それを境に値を代入してdy/dxを調べればいいのでしょうか? (2)に関してはどうしたらいいのかさっぱりです。 (1)、(2)共に解説していただけるとありがたいです。 よろしくお願いします。

  • ODE > 全微分

    全微分とは何かについて質問したいと思います。 読んでいたweb上の資料では以下の記載がありました。 ----- P(x,y)dx + Q(x,y)dy の微分形式が2変数f(x,y)の全微分になっているとき、すなわち df = ∂f(x,y)/∂x(x,y) dx + ∂f(x,y)/∂y dy = P(x,y)dx + Q(x,y)dy ----- 質問ですが、「全微分でない」というのは、ようするにf()という関数が別の変数(例えばz)に従属していて、fの微分をとった時にzの偏微分も入れないといけない、というようなことでしょうか?

  • 偏微分(2変数関数)再質問

    先日偏微分について質問したものです。先日は有難うございました。質問内容に誤りがあったので、再質問させてください。 g(x、y)=0(1)について、両辺をxで微分すると、合成関数の微分法より、gx+gyy‘=0 z=f(x、y)(2)の両辺をxで微分すると、dz/dx=fx+fy×(dy/dx)とあります。 (1)についても(2)についても2変数関数なのに、xで偏微分するのではなく、普通にxで微分できるのかがわからないです。また、どうして、(1)gx+gyy‘=0 や(2)dz/dx=fx+fy×(dy/dx)のようにxで微分したらなるのかがわかりません。 いちおう全微分まで、勉強したので、(2)についてはdz=fxdx+fydyをdxで割った形かなと思いましたがよくわかりません。どなたかわかる方教えてください。

  • ラグランジュの未定乗数法に関する記述について(陰関数)

    g(X,Y)=0の陰関数表示されたものは、今までXY平面でZ=0で表示される曲線だと思っていたんですが、本に「g(X,Y)=0は、XとYの陰関数で図形的にはZについて何の制約もないのでZ軸に平行な曲面を表す」とあり???つって感じです。  XY平面に平行でかつZ=0での曲線ではないんでしょうか?  お詳しい方教えて下さい。宜しくお願いします。

  • 陰関数媒介変数表示の微分、媒介変数表示陰関数の微分

    なにか微分可能な平面曲線があるとし、その傾きが知りたいとします。 陽関数y=f(x)の微分は、 dy/dx=f'(x)です。 媒介変数表示x=f(t),y=g(t) の微分は、 dy/dx={df(t)/dt}/{dg(t)/dt}です。 陰関数f(x,y)=0の微分は、 dy/dx=-{∂f(x,y)/∂x}/{∂f(x,y)/∂y}です。 陰関数の中に媒介変数があるh(x,y)=h(f(t),g(t))=0 の微分は、どうなるのでしょうか? 媒介変数表示が陰関数になっているf(x,t)=0,g(y,t)=0 の微分は、どうなるのでしょうか?

  • 偏微分

    偏微分を用いて、全微分をするとき 例えばx,y,zの時間に依存する変数からなる関数f(x,y,z)を時間で全微分する時、 df/dt=(df/dx)(dx/dt)+(df/dy)(dy/dt)+(df/dz)(dz/dt) となると思うのですが、 仮に、x,を時間だけでなく、もう一つ時間に依存する関数n(t)を与えるとします、 つまり X=x+n(t) f(x) => f(X)=f(x+n(t)) になるとします。 その時、時間の全微分はどうなるのでしょうか? f(x+n(t))はxとn(t)に依存しているので、f(x,n(t))と書いて f(x+n(t))=f(x,n(t)) df(x+n(t))/dt=(df(x,nt)/dt)=(df/dx)(dx/dt)+(df/dn)(dn/dt) としてもいいんでしょうか? 後どのような時、偏微分しても可能なのか教えて頂ければ幸いです。 どなたか分かる方よろしくお願いします。

  • 全微分の問題です。合ってるかどうか分かりません。確かめてください。お願いします。

    次の関数の全微分を求めよ。 (1) z=1/(√x^2+y^2) 解:dz=-x/{√(x^2y^2)^3}dx-y/{√(x^2y^2)^3}dy (2) z=tan^-1(x^2+y^2) 解:dz=2x/{(x^2+y^2)^2+1}dx+2y/{(x^2+y^2)^2+1}dy (3) z=exp(1/x^2+y^2) 解:dz=-[2x/{(x^2+y^2)^2}]e^{1/(x^2+y^2)}dx-[2x/{(x^2+y^2)^2}]e^{1/(x^2+y^2)}dy

  • 全微分の式

    2変数関数F(X,Y)の全微分dF(X,Y)について、dF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYが成立するのを証明していただけませんか? 講義だと、Xがaからh、Yがbからkに移動するときの平均変化率が、[F(X+a, Y+b)-F(X,Y)]/(h+k)^2みたいに書かれていて(すいません、書き間違えているかもしれません・・・うろ覚えなので)、どうして分子が(h+k)^2なのか分からないのです・・・。なお、上のdF(X,Y)=δF(X,Y)/δX・dX+δF(X,Y)/δY・dYは、微分の公式としてよく出てくる(XY)'=X'Y+Y'Xと同じ物ですか?