• 締切済み
  • 困ってます

数学、図形と方程式

問、平面内に2点P(2,0), Q(0,4)をとり2点P,Qを通る円を考える。この円の中心Cのx座標をmとする。 (1)このときCの座標は(m, 1/2m+3/2) (解)線分PQの方程式はy=-2x+4。線分PQの垂直二等分線の方程式はy=1/2x+3/2となり円Cの中心は y=1/2x+3/2上に存在するので。 次の問に疑問点があります。 (2)m=□のとき円はy軸に接し、その円の方程式は(x-□)^2+(y-□)^2=□□である。  という問題なのですが、 最初の m=□を求める際に解答は、下記のようなんですが、 (解)円Cがy軸に接するつまり、Q(0,4)を接する円となる。よって、(Cの中心のy座標)=4となる。 1/2m+3/2=4→m=5となる。 1/2m+3/2=4 ←これが理解できないです。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2

P、Qを通る円の中心は、PQの垂直二等分線上にあるからですよ。 円の中心をCとすると、CP = CQ = 円の半径となり、 △CPQは、PQを底辺とする、CP=CQの二等辺三角形となって、PQの中点をMとすると、 CMとPQは直交する。 これを式にしたのが、  y = (1/2)m+3/2 です。 y = -2x + 4と直交するから、垂直二等分線の方程式の傾きをaとすると、  -2a = -1  a = 1/2 で、これは(2,0)と(0,4)の中点(1,2)を通るから、  y -2 = (1/2)(x-1)  y = (1/2)x + 3 となります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます

  • 回答No.1
  • gohtraw
  • ベストアンサー率54% (1630/2966)

この円はy軸に接し、かつ(0,4)を通るので、(0,4)は 接点に他ならないことはOKですか? 上記より、(0,4)を通りy軸に垂直な直線を考えるとこの 円の中心は上記の直線上にあることはOKですか? ということは、この円の中心のy座標は4であることはOK ですか? 以上より 1/2m+3/2=4 となります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます

質問者からの補足

この円の座標が(m,4)になるのはわかりますが、なぜmを求めるときに、y=1/2m+3/2を用いるのですか?

関連するQ&A

  • 【高校数学】図形と方程式

    a,b,mを正の実数とする。 xy平面上の点A(a,0)から直線y=mxへ下ろした垂線の足をA'とし、x軸に関してA'と対称な点をPとする。 また、点B(0,b)から直線y=mxへ下ろした垂線の足をB'とし、y軸に関して対称な点をQとする。 線分PQを2:1に内分する点をRとする。 mの値が全ての正の実数を動くとき、Rの軌跡を図示せよ。 この問題で、私は P(p,-mp)Q(-q,mq) ※p=a/m^2+1,q=b/m^2+1 R(p-2q/3,-m(p-2q)/3)、 Rのx座標=X,y座標=Yとおき Y=-mXにX,p,qを代入してm>0の範囲に少なくとも1つ解を持つ範囲を求めようとしましたが、上手くいきませんでした。 よろしければどこが間違っているかの指摘もしくは解法をよろしくお願いします。

  • 数学Ⅱ 図形と方程式の問題

    「座標平面に点A(1,0)を固定し、点Pを直線 x+y=2 上に、点Qを円 x^2+y^2=1 上にそれぞれとる。このとき、線分の長さの和 AP+PQの最小値と、そのときの点P、Qの座標を求めよ。」 という問題で、以前ここで質問してその回答を基に、最小値は求めることができました。 しかし、その後のP、Qの座標の求め方がよく分かりません(^^;) 大まかで良いので回答よろしくお願いします!

  • 図形と方程式

    次の問題の(2)の解き方がわからないので教えてください。 座標平面上に、円(x-2√3)^2+(y-4)^2=4(1)と、直線y=mx+2(2)がある。ただしmは定数とする。 (1)円(1)と直線(2)が接するとき、mの値と、そのときの接点の座標を求めよ。 (2)円(1)と直線(2)が異なる2点P,Qで交わるとき、mのとりうる値の範囲を求めよ。また、このとき線分PQの中点Mの座標をmを用いて表せ。 (1)は、(1)(2)からxの式にして、D=0で計算して、m=0のとき(2√3,2),m=√3のとき(√3,5)になりました。 (2)は、D>0で計算し0<m<√3まで出たんですが、その後どうすればよいかわかりません。 よろしくお願いします。

  • 数学IIB 図形

    原点Oとする座標平面上にA(1,5),B(1,1)がある (1)O,A,Bを通る円C1の方程式 (2)A,Bを通り、中心は第一象限にあり、x軸から長さ4の線分を切り取る円C2の方程式 (3)C1とC2を合わせ得た図形C1UC2をCとする l:y=mxとCの共有点の個数が3となるような実数m 途中式もお願いします

  • 図形と方程式の問題です

    A(5,1)B(2,6)とする。x軸上に点P、y軸上に点Qをとるとき、AP+PQ+QBを最小にする点P、Qの座標を求めよ。また、そのときの最小値を求めよ。 僕は類似の問題で対称移動を使ってといたのですが、この問ではうまくいきませんでした。 どうかお願いします

  • 放物線と方程式

    分からない問題があるので教えてください。一応少しは解けましたが、難しすぎて歯が立ちません。どうか、よろしくお願いします。すべて教えていただけなくても、結構です。 y=x^2によって定められたxy平面状の放物線をCとする。C上にない点PとC上にある2点Q,Rについて、次の条件を満たしている。∠RPQ=90°, 線分PQは点QでCの接線と直交している, 線分PRは点RでCの接線と直交している。次の問いに答えよ。 (1)点Qのx座標をa,点Qにおける接線の方程式の傾きをmとしたとき、この接線の方程式をa,mを用いて表せ。 (2)mをaの式で表せ。 (3)点Rのx座標をbとする。このとき次の座標をa,bをを用いて表せ。 1,2点Q,Rの中点Mの座標  2,2点Q,RにおけるCの接線のの交点Sの座標 (4)点Pの座標をa,bを用いて表せ。 (5)点Q,RがC上を動くとき、点Pの奇跡の方程式を求めよ。 (6)a>0とする。△QSMの面積をS(a)と置き、これを求めよ。 (7)点QがC上を動くとき、△PQRの面積の最小値を求めよ。 解答できたのは、(1)だけです。(3)-1もできましたが、(2)が解けないため、(3)-2はできませんでした。

  • 数学の問題です

    この問題がわかりません(´-ε-`;) 座標平面上の円C:x^2+y^2=9と直線l:y=-2x+3を考える。 tを実数とし、直線l上に点P(t,-2t+3)をとる。 (1)点Q(u,v)が円C上を動くときの線分PQの中点Mの軌跡C'を考える。ただし、もし2点P,Qが一致するならば、その一致する点をMとする。こうして得られるC'は円となる。C'の半径の値を求め、中心の座標をtの式で表せ。 (2)点Pが直線l上を動くとき、(1)で得られたC'の中心の軌跡の方程式を求めよ。 (3)円C'と(1)で得られた円C'が外接するときのtの値を求めよ。 答えは (1)半径3/2、中心(t/2,-2t+3/2) (2)y=-2t+3/2 (3)t=6±6ルート11/5です。

  • 数学の問題

    数学の問題 原点O(0,0)を中心とする半径1の円に、円外の点P(x0,y0)から2本の接線を引く。 (1)2つの接点の中点をQとするとき、点Qの座標(x1,y1)を点Pの座標(x0,y0)を用いて表せ。 また、OP*OQ=1であることを示せ。 という問題です。 接点をA,Bとすると、AとBを結んだ線分は点Pの極線だから、その方程式は x0x + y0y = 1 というのは分かります。 PA=PB だから三角形PABは二等辺三角形 よって、点Pから点Qに線を引くと、それらは垂直に交わる。 つまり、PQの方程式を求め、それとx0x + y0y = 1 との交点が点Qの座標です。 なので、PQを求めたいわけなんですが 求め方が分かりません。 y0x + x0y = 0 がPQなんですが、どうやって求めるのでしょうか? また、その座標を求めたとして、次に「OP*OQ=1であることを示せ」ですが 解説では OQ^2 = x^2 + y^2 =1/OP^2 よって、OP*OQ = 1 とあるんですが、なぜこのような考え方なのかが分かりません。 どのような考え方なんでしょうか?

  • 曲線の方程式の求め方が分かりません

    点(a,0)を中心とする半径aの円Cの点(2a,0)における接線mを考える。m上の点Pに対して、線分OPと円Cの交点をQとするとき、OX=PQとなるような線分OP上の点Xの描く軌跡の方程式を求める問題です。どうやらシソイドになるようなのですが、どうしてもシソイドの方程式を導くことができません。分かる方いましたら教えてください。

  • 受験生です。数学の問題がわからなくて困っています

    数学の時間に出されたプリントの問題がわからなくて困っています。 もう中学校は卒業してしまい、先生にも会えなくなって、答えのプリントも配られていないので、答えがわかりません。家族に聞いても、わからないようで、困っています。 問題は、 図で、A、Bはそれぞれ関数y=-x+12のグラフとx軸、y軸との交点、Cはx軸上の点である。Pは線分OB上の点、Qは直線CPと線分ABとの交点である。また、Sは線分OA上の点で、四角形CSQRは長方形である。点Cの座標が(-3、0)のとき、次の問いに答えなさい。 問い 四角形CSQRが正方形になるときの点Sのx座標を求めなさい。 この問いは四つ目で、その前に出てきた三つの問いとその答え↓ ※私が求めた答えなので、合っているかはわかりません。 (1)CP=PQとなるときの点Qの座標を求めなさい。 A,(3、9) (2)点Aを通り、直線BCに平行な直線の式を求めなさい。 A,y=4x-48 (3)三角形BQPの面積が三角形BCPの面積の2倍になるとき、直線CPの式を求めなさい。 A,y=3x+9 もし答えてくれる方がいれば、よければ求め方も教えてくださるとうれしいです。 よろしくお願いします。 図は画像を見てください。