• 締切済み
  • すぐに回答を!

逆三角関数について

下の問題がわからないです。>< 範囲の指定外の答えがでてそこからどうやって範囲内の答えになったのかがわかりません。 公式を使うのならなぜその公式を使うのかとかわかりやすい解説をお願いします。 (1)Sin^-1(sin8π/7) (2)Cos^-1(cos8π/7) 答え (1)-π/7 (2)6π/7

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数149
  • ありがとう数0

みんなの回答

  • 回答No.4
  • info222_
  • ベストアンサー率61% (1050/1703)

(1) y=Sin^-1(sin(8π/7)) …(※1) とおくと逆関数の定義から  sin(y)=sin(8π/7)=sin(π+π/7)=-sin(π/7)=sin(-π/7) Sin^-1の定義と値域から -π/2≦y≦π/2, -1≦sin(y)≦1 なので  y=-π/7 (※1) より  Sin^-1(sin(8π/7))=-π/7 (2) y=Cos^-1(cos(8π/7))…(※2) とおくと逆関数の定義から  cos(y)=cos(8π/7)=cos(π+π/7)=-cos(π/7)=cos(π-π/7)=cos(6π/7) Cos^-1の定義と値域から 0≦y≦π, -1≦cos(y)≦1 なので  y=6π/7 (※2) より  Cos^-1(cos(8π/7))=6π/7 となり、(答)と一致します。 >答え >(1)-π/7 >(2)6π/7 逆三角関数の定義域と値域について復習して置いてください。 なお、三角関数の逆関数は主値 Sin^-1(x), Cos^-1(x), Tan^-1(x) をとることで1:1の対応関係を持たせ逆関数を定義しています。逆三角関数を主値の範囲で定義しますが、習いたての最初だけ「Sin^-1(x), Cos^-1(x), Tan^-1(x)」と書きますが、一般的には同じ意味で先頭を小文字にした「sin^-1(x), cos^-1(x), tan^-1(x)」を使うことの方が多いです。 参考URL

参考URL:
http://next1.msi.sk.shibaura-it.ac.jp/SHIBAURA/2010/calc1/lecture2.pdf

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の合成

    問題:0≦θ≦πの範囲のとき、sinθ+cosθ=tとおいた時の、tの値の範囲 自分で考えた結果、t=sinθ+cosθ=√2sin(θ+π/4) 0≦θ≦πなので、π/4≦θ+π/4≦5/4*π ←ここまでは分かったんです が、ここからどうやってtの値の範囲を出すか分かりません。 ちなみに、答えは-1≦t≦√2です。 教えてください

  • 三角関数問題を教えて欲しいのですが

    次の方程式、不等式を解け。 (1)sin三乗θ+cos三乗θ=sinθ+cosθ  (π/2<θ<π) (2)cosθ-3√3cosθ/2+4>0  (0≦θ<2π) これからどうやったらθがだせるのかわかりません。 (2)はθ/2からどうやってθの範囲が出るのか・・・ わかりやすく解説お願いします。

  • 逆三角関数の問題です。

    次の式を簡単にせよ。 arctan(1/2)+arctan(1/3) arcsinx+arccosx という問題で、解法には、それぞれtan(与式),sin(与式)とあり、 答えはπ/4,π/2となっているのですが、 どのようにこの答えが導き出されたのかが分かりません。 どなたか解説していただけないでしょうか。よろしくお願いします。

  • 回答No.3

Sin^-1(x),Cos^-1(x)はsin^-1(x),cos^-1(x)の主値と呼ばれるもので 各々-Π/2≦Sin^-1(x)≦Π/2, 0≦Cos^-1(x)≦Πの間に入る値を示します。 (1)sin^-1(sin8π/7)=8π/7, 8π/7±2nπ, -π/7, -π/7±2nπ (nは整数)という無限の解がありますが -Π/2とΠ/2との間に入るのは-π/7だけ、これをSin^-1(sin8π/7)と書きます。 (2)cos^-1(cos8π/7)=8π/7, 8π/7±2nπ, -8π/7, -8π/7±2nπ (nは整数)という無限の解がありますが 0とΠとの間に入るのは,-8π/7+2π(n=1)=6π/7だけ、これをCos^-1(cos8π/7)と書きます。

共感・感謝の気持ちを伝えよう!

質問者からの補足

(1)sin^-1(sin8π/7)=8π/7, 8π/7±2nπ, -π/7, -π/7±2nπ (nは整数)はどうやって出したのですか? (2)cos^-1(cos8π/7)=8π/7, 8π/7±2nπ, -8π/7, -8π/7±2nπ (nは整数)はどうやって出したのですか? -8π/7+2π(n=1)=6π/7はなぜ2π足してるのですか? なかなか理解ができなくてすみません。

  • 回答No.2

アークサイン(逆正弦関数)の「定義」を知らんと、答案にたどり着けぬでしょうネ。   ↓ たとえば参考 URL などにて、チャンと把握して…。   

参考URL:
http://w3e.kanazawa-it.ac.jp/math/category/sankakukansuu/henkan-tex.cgi?target=/math/category/sankakukansuu/arcsin.html

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • f272
  • ベストアンサー率45% (5141/11389)

図を見ればわかるでしょ。 sinの場合は右半分に移動,cosの場合は上半分に移動する。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数を含む関数の最大値、最小値

    0≦θ<2πのとき、関数y=3sin^2θ+2√3*sinθcosθ+cos^2θの最大値、最小値と、そのときのθの値を求めよ。 この問題の解答解説では、0≦θ<2πのとき、-π/6≦sin(2θ-π/6)<4π-π/6を用いて、sin(2θ-π/6)=1のとき、上記の式の範囲において、2θ-π/6=π/2、5π/2。よってθ=π/3、4π/3。 この流れで2θ-π/6をなぜ求められるのか、仕組みがどうしてもわかりません。どなたか解説お願いします。

  • 三角関数

    現高1で明日テストを控えていて急いでいます。答えではなくヒントでいいのでお願いします。 問1 cos(π/3+θ)+cos(π/3-θ)=? 問2 sinθ+sin(θ+2π/3)+sin(θ+4π/3)=? 以上よろしくお願いします。

  • 数学II 三角関数の問題について

    数学でどうしても分からない問題があったので質問させていただきます。 関数f(θ)=sin2θ+2(sinθ+cosθ)-1を考える。ただし、0≦θ≦πとする。 (1)f=sinθ+cosθとおくとき、f(θ)をtの式で表せ。(答え:t^2+2t-2) (2)tのとりうる値の範囲を求めよ。 (解)t=sinθ+cosθ=√2sin(θ+π/4)    0≦θ≦πであるから、π/4≦θ+π/4≦5/4π    ゆえに-1≦t≦√2 (解)の下から2番目の行から一番最後の行の過程がよく分かりません。 なぜπ/4≦θ+π/4≦5/4πだと-1≦t≦√2になるのでしょうか。 他の問題も参考にしたり教科書で調べたりしましたがどうしても分かりませんでした。 回答よろしくお願いします。

  • 逆三角関数の値

    ちょっと式がややこしいですが、 sin(arccos√3/2)+cos(arctan((-1)/√3))+arcsin((-1)/√2) を計算すると、 sin(π/6)+cos(-π/6)-π/4 となり、 結果が 1/2+(-√3/2)-π/4 だと思ったのですが、 解答は、(√3-1)/2 となっていました。 どこが間違っているのでしょうか。

  • 三角関数

    関数 y=sinθ+cosθ&#65293;2sinθcosθについて (1)t=sinθ+cosθ とするとき、tの値の範囲を求めよ。 (2)sinθcosθを(1)のtを用いて表せ。 (3)関数yの最大値と最小値を求めよ。 テスト範囲なのですが 授業では解説されなかった問題ですので答えが分かりません。 解説をしていただけないでしょうか?

  • 逆三角関数の問題ですが、まったく理解できません。いつも初歩的な質問です

    逆三角関数の問題ですが、まったく理解できません。いつも初歩的な質問ですみませんが、解説お願いします。 (1) cos^(-1) 3/5 - sin^(-1) 4/5 (2) tan^(-1) 1/2 + tan^(-1) 1/3 (3) sin^(-1)a + cos^(-1)a    (-1<a<1)   解答は (1) 0 ,(2) π/4 (3) π/2でした。

  • 三角関数の問題です。

    次の問題をどう解けばいいのかわかりません。 途中計算式と詳しい解説をお願いします。 (1) sin(x/3)=1, x= a.π/6 b.π/2 c. 2π/3 d. 3π/2 (2){1-sin^(2)t}/cost = a. cos^(2)t b. cost c. sin^(2)t d. sint

  • 三角関数の問題です。

    三角関数の問題です。 cos3θ+sin2θ+cosθ>0を満たすθの範囲を求めよ。ただし、0≦θ<2πとする。 という問題です。次の様に解答したのですが、間違いや、つっこまれそうな所があったら指摘して下さると助かります。 cos3θ=4cos^3θ-3cosθより、 cos3θ+sin2θ+cosθ=4cos^3θ-3cosθ+2sinθcosθ+cosθ =cosθ(4cos^2θ+2sinθ-2)=cosθ{4(1-sin^2θ)+2sinθ-2} =cosθ(-4sin^2θ+2sinθ+2)=-2cosθ(2sinθ+1)(sinθ-1)>0 ∴cosθ(2sinθ+1)(sinθ-1)<0 (1)cosθ>0のとき、(2sinθ+1)(sinθ-1)は負 2sinθ+1>0, sinθ-1<0 のとき、これを満たすθの範囲は、0≦θ<π/2,11/6π<θ<2π 2sinθ+1<0, sinθ-1>0 のとき、これを満たすθは存在しない。 (2)cosθ<0のとき、(2sinθ+1)(sinθ-1)は正 2sinθ+1>0, sinθ-1>0 のとき、これを満たすθは存在しない。 2sinθ+1<0, sinθ-1<0 のとき、これを満たすθの範囲は、7/6π<θ<3/2π (1),(2)から、求めるθの範囲は、0≦θ<π/2,7/6π<θ<3/2π,11/6π<θ<2π 宜しくお願いします。

  • 三角関数の問題

    方程式を解けという問題で 2sin^2θ>sinθ+1 という問題がありました。 これを簡単にして (sinθ-1)(2sinθ+1)>0 sinθ-1<0であるから 2sinθ+1<0 sinθ<-1/2 7π/6<θ<11π/6 と出したらあっていました。 しかし他の問題で 2cos^2θ≦sinθ+1 という問題があり、これを整理して (sinθ+1)(2sinθ-1)≧0 sin+1≧0だから 2sinθ-1≧0 sinθ≧1/2 π/6<θ<π5/6 と出しました。 しかし答えにはこれに加えてθ=-3π/2もありました。 おそらくsin+1≧0を計算したものなのでしょうが、なぜ上の問題はsinθ-1<0を計算しないでよくて、下の問題は計算しなければならないのでしょうか?

  • 三角関数 合成

    cosθ+Sinθcosπ/6+cosθsinπ/6>0 が√3/2sinθ+3/2cosθ >0 に変形する過程を解説してください。