• ベストアンサー
  • すぐに回答を!

不定積分

∫x^2lnxdt=x^2(lnx)t+C (Cは積分定数) これで合っていますよね? ちなみに定積分で積分範囲が1~4のときの答えは、 3x^2lnx で合っていますよね? すいません解答が無いので質問させていただきました。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数114
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

x を定数と考えて,t で積分しているようなので,それなら合ってます.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 不定積分が解答と一致しません

    √{(x-1)/(2-x)}を積分せよ。という問題の答えが解答と一致しません √(2-x)=tと置いてx=2-t^2,dx==-2tdt  ∫√{(x-1)/(2-x)}dx =∫√(1-t^2)(-2tdt)/t =-2∫√(1-t^2)dt [∫√(1-t^2)dt]の部分は公式を使ったり、部分積分を用いたりして[{t√(1-t^2)+arcsint}/2](ここでは積分定数を省略) よって-√(x-1)(2-x)-arcsin√(2-x)+C(C:積分定数)だと思ったのですが、解答には arctan√{(x-1)/(2-x)}-√(x-1)(2-x)+Cとあります。 -√(x-1)(2-x)-arcsin√(2-x)+Cという答えはあっていますか?

  • 正弦波の不定積分における積分定数の求め方

    正弦波の不定積分について質問です。 Vin =∫sinωtdt を積分すると Vout=(-1/ω)cosωt+C(C:積分定数) になりますが、この時の積分定数の求め方を教えてください条件はt=0の時Vin=0になります。 やり方が間違ってるみたいで何度やっても解答と一致しないので・・・

  • 不定積分の問題です

    ∫(x^4 + x + 1)/(x^3 - 2x^2 + x)dx の答えは 1/2x^2 + 2x + log(x-1)/x + 1/(x-1) + C(積分定数) で、合っていますか?

  • 不定積分の問題

    不定積分の問題です。mを自然数とするとき、                n       (1)∫(cosx)^(2m-1)dx=Σa(k)(sinx)^k+C                k=1 (Cは積分定数) (a(k)のkは添え字です。) を満たす自然数nおよび実数a(k)(k=1,2,…,n)を求めよ。 (2)f(t)を多項式とするとき、 ∫f(cosx)dx-∫f(-cosx)dx=g(sinx)+C (Cは積分定数) を満たす多項式g(t)が存在することを示せ。 という問題です。 (1)はn=2m-1     a(k)=0(k=2.4.…n-1)        (k=1,3,…n)のときは式が複雑なので記載するのは控えます。 分からないのは(2)で解答には     n f(t)=Σb(k)t^k とおけるので、n=2L-1とおくと    k=0        L f(t)-f(-t)=Σ2b(2m-1)t^(2m-1)      m=1 となっているんですが、なぜ n=2L-1とおくのか、f(t)-f(-t)の右辺のΣのmが1→L なのかがわかりません。 宜しくお願いします。

  • 不定積分の問題

    不定積分 ∫(Lnx)^2/xdx →答え (Lnx)^3/x になります。 私が求めた場合 (Lnx)^3/3になります。どこが違うのでしょうか  ? それとも回答が違うのでしょうか?

  • 不定積分の問題について

    写真の問題が検算すると間違っているようですが、積分が違うのか微分が違うのかわかりません。どこが間違っていますか? 問題は、 ∫(2x^4 - 3x^3 + 2x^2 - 3x - 2)/(x^3 - x^2 + x - 1) dx です。 計算すると、答えが x^2 - x + log((x^2 + 1)^(1/2)/(x - 1)^2) + arctanx + C(積分定数) になりました。 でもこれを微分すると (2x^4 - 3x^3 + 2x^2 -2x -2)/(x^3 - x^2 + x - 1) になります。 問題では分子のxの係数は-3だけど計算では-2になってしまいます。

  • 積分定数について

    高校の不定積分の積分定数の扱いについて、ふとした疑問が… ∫(x-1)^2dx = 1/3 (x-1)^3 + C = 1/3 x^3 -x^2 + x + C と答案に書くのは(厳密に言うと)おかしいのではないのでしょうか? つまり、(x-1)^3 は展開すると -1 という定数項が生じますよね。それをまとめて最終的に C という積分定数でひとまとめにしてしまうと、2番目の式と3番目の式とで、同じCでも値は違う…という事になるような気がしますが、気にしなくていいのですか? 積分定数Cの値は自在に変化するものとして無視していいのですか? それとも、例えば3番目の式の積分定数はCからBに変えて、最後に *B,Cは積分定数 とでも書いておけばいいのでしょうか? あくまで展開した形で答えを書きたい場合ですが…高校数学レベルの質問としてお答え下さい。お願いします。

  • 不定積分について

    大学一年の者です。問題に略解しかついていない某微分積分の教科書に記載されている問題なのですが、途中式がよくわからない問題があるので、質問させて頂きました。 ∫ dx/x(1+x^2)^2 なのですが、 ∫ dx/(1+x^2)^2 を積分して (x/1+x^2 + arctanx)/2 となり、これを用いて、部分積分による方法で解こうとしたのですが上手く解けません。ちなみにarctanxはアークタンジェントxのことです。  略解は   1/2(1+x^2) + log(x^2/1+x^2)/2 + C(積分定数) となっております。

  • 不定積分

    ∫x^n/n!dx=x^(n+1)/(n+1)!+C(積分定数) となりますが、 n→∞とすると、 左辺=C 右辺=∫0dx=0 だからC=0 この議論てあってますか??

  • 積分の答えについて

    ∫(3x-5)/(x-2)dxの答え方なのですが、3(x-2)+log|x-2|+C C:積分定数とするか3(x-2)を展開して6も積分定数に含め3x+log|x-2|+Cとするのかで迷っています。 どちらの答えでもない可能性もありますが... 回答よろしくお願いします。