• ベストアンサー
  • すぐに回答を!

不定積分

∫x^2lnxdt=x^2(lnx)t+C (Cは積分定数) これで合っていますよね? ちなみに定積分で積分範囲が1~4のときの答えは、 3x^2lnx で合っていますよね? すいません解答が無いので質問させていただきました。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

x を定数と考えて,t で積分しているようなので,それなら合ってます.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 不定積分が解答と一致しません

    √{(x-1)/(2-x)}を積分せよ。という問題の答えが解答と一致しません √(2-x)=tと置いてx=2-t^2,dx==-2tdt  ∫√{(x-1)/(2-x)}dx =∫√(1-t^2)(-2tdt)/t =-2∫√(1-t^2)dt [∫√(1-t^2)dt]の部分は公式を使ったり、部分積分を用いたりして[{t√(1-t^2)+arcsint}/2](ここでは積分定数を省略) よって-√(x-1)(2-x)-arcsin√(2-x)+C(C:積分定数)だと思ったのですが、解答には arctan√{(x-1)/(2-x)}-√(x-1)(2-x)+Cとあります。 -√(x-1)(2-x)-arcsin√(2-x)+Cという答えはあっていますか?

  • 不定積分

    ∫1/(1+x^2)dxってどうやって解くんでしょうか?? 定積分ならx=tan(t)と置くと思うんですが、不定積分の場合は最後にtをxの式に直さないといけないですよね?? どうしたらいいんでしょうか??

  • 不定積分の問題

    不定積分 ∫(Lnx)^2/xdx →答え (Lnx)^3/x になります。 私が求めた場合 (Lnx)^3/3になります。どこが違うのでしょうか  ? それとも回答が違うのでしょうか?

  • 正弦波の不定積分における積分定数の求め方

    正弦波の不定積分について質問です。 Vin =∫sinωtdt を積分すると Vout=(-1/ω)cosωt+C(C:積分定数) になりますが、この時の積分定数の求め方を教えてください条件はt=0の時Vin=0になります。 やり方が間違ってるみたいで何度やっても解答と一致しないので・・・

  • 不定積分。

    置換積分で次の問題をとくには? 「不定積分:∫1/(√(1+x^2))」 を解け」 という 問題なのですが、x=tanθで置換をして もできるらしいのですが(参考書には計算が面倒だができる) どうしても最後まで落とすことができません。 ちなみに参考書では√(x^2+1)+x=tで置換をやっていて、 計算は,√(x^2+1)+x=tとおくと[{x/√(x^2+1)}+1]dx=dt よって{1/√(x^2+1)}dx=(1/t)dt したがって∫1/(√(x^2+1))dx=∫(1/t)dt=logt+C=log{√(x^2+1)+x}+C という結果になっています。 しかし、x=tanθの置換をしたやりかたでは、 どのように計算をしていくのかが分りません。 どなたか、計算手順または解答を教えてください。 よろしくおねがいします。

  • 「log(t^2+1)」のt:0→1の範囲での定積分

    「log(t^2+1)」のt:0→1の範囲での定積分 上記の定積分の問題が解けません。 どなたか解法・解答をお願いします。

  • 不定積分の問題です

    ∫(x^4 + x + 1)/(x^3 - 2x^2 + x)dx の答えは 1/2x^2 + 2x + log(x-1)/x + 1/(x-1) + C(積分定数) で、合っていますか?

  • 不定積分について

    大学一年の者です。問題に略解しかついていない某微分積分の教科書に記載されている問題なのですが、途中式がよくわからない問題があるので、質問させて頂きました。 ∫ dx/x(1+x^2)^2 なのですが、 ∫ dx/(1+x^2)^2 を積分して (x/1+x^2 + arctanx)/2 となり、これを用いて、部分積分による方法で解こうとしたのですが上手く解けません。ちなみにarctanxはアークタンジェントxのことです。  略解は   1/2(1+x^2) + log(x^2/1+x^2)/2 + C(積分定数) となっております。

  • 不定積分の計算で出た定数は捨てて良いのでしょうか

     46歳の会社員です。思うところがあって、1 年前から数学を独学で勉強しています。  非常にレベルが低い質問をしているのかもしれませんが、周りに聞ける人がいないのでここに質問をすることにしました。  不定積分の計算で出てきた定数は積分定数と扱って捨ててよいのでしょうか ?  例えば、 ∫(x + 1)^2 dx ((x + 1)の 2乗を積分) を ∫(x^2 + 2 * x + 1) dx に変形すると、 x^3 / 3 + x^2 + x になりますが、 x + 1 = t とおいて ∫t^2 dt に変形すると、 x^3 / 3 + x^2 + x + 1 / 3 となり、定数 1 / 3 が出てきます。  また、 ∫{2 / (2 * x + 2)} dx を ∫{1 / (x + 1)} dx に変形すると、 log|x + 1| になりますが、 2 * x + 2 = t とおいて ∫(2 / t) * (1 / 2) dt に変形すると、 log|2 * x + 2| になります。  これを log|2 * x + 2| = log|(x + 1) * 2| = log|x + 1| + log|2| と変形すると、定数 log|2| が出てきます。  これらの定数は積分定数として扱って捨ててよいのでしょうか ?

  • 不定積分は途中経過によって結果が変わりますか?

    (1)x/(2x+3)^2 (2)(tan x)^3 を積分せよ.という問題で,解答と自分の答えがありません. (1)=x*{-1/2(2x+3)}'より部分積分の方法を用いて -x/{2(2x+3)}+log|2x+3|/4+C と出しました. しかし,問題集の解答(2x+3=tとする方法)には {log|2x+3|+3/(2x+3)}/4+C とありました. (2)=(sin x)^2*{1/2(cos x)^2}'より部分積分を用いて {(tan x)^2}/2+log|cos x|+C と出しました しかし,問題集の解答((sin x)^2=1-(cos x)^2とする方法)には log|cos x|+1/{2(cos x)^2}+Cとありました. どちらの問題のどちらの答えも微分すると(1),(2)に戻るのですが,どちらも正解ですか?