• ベストアンサー

極座標での運動方程式

質量mをもつ質点の、時刻tにおける位置ベクトルをr↑(t)とする。 運動方程式は、ベクトル形式でm(d^2r↑(t)/dt^2)=F↑(r↑(t),t)と表せる。 x軸、y軸方向それぞれの単位ベクトルをex↑,ey↑とする。 動径方向、角度方向の、それぞれの単位ベクトルをer↑、eθ↑とする。 er↑、eθ↑をex↑,ey↑、θでそれぞれあらわせ。 全くわかりません。 詳しい解説お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • ybnormal
  • ベストアンサー率50% (220/437)
回答No.2

まず、er↑は原点から質点のある場所に向かうベクトルの単位ベクトル。 eθ↑は、r↑とx軸がなす角度θが変化する方向への(単位)ベクトルで、結局のところr↑に対して直交する方向を向く。 別の見方をするなら、XY座標を例えばθだけ回転させてx軸がr↑の方向に一致するようにした場合に、ex↑がer↑になり、ey↑がeΘ↑になる。 これを踏まえて、er↑とeΘ↑をex↑とey↑とθであらわせばいいが、図を描くのに手間がかかるので、人の褌で相撲をとらせてもらいます。リンク先の図で、θを90度、φをθとすればあなたの問題と同じ状況になります。 http://www.th.phys.titech.ac.jp/~muto/lectures/Gmech08/chap05.pdf

24143324
質問者

お礼

詳しい解説ありがとうございます。

その他の回答 (2)

  • ybnormal
  • ベストアンサー率50% (220/437)
回答No.3

こっちのほうが図がわかりやすいかな。4ページ目。 http://www.mech.shibaura-it.ac.jp/lecture/material_free/Mechanics2/2005/EM2_0501.pdf ArとAθがなぜそうなるかは図を見て考えてみてください。 ところで、”直交座標 極座標 変換 ベクトル”でサーチすると詳しい説明がいろいろ見つかります。

24143324
質問者

お礼

詳しい解説ありがとうございます。

回答No.1

er↑ = cosθ・ex↑ + sinθ・ey↑ eθ↑ = -sinθ・ex↑ + cosθ・ey↑ という関係がある。

関連するQ&A

  • 固定されたデカルト座標での運動方程式

    質量mをもつ質点の、時刻tにおける位置ベクトルをr↑(t)とする。 運動方程式は、ベクトル形式でm(d^2r↑(t)/dt^2)=F↑(r↑(t),t)と表せる。 x軸、y軸方向それぞれの単位ベクトルをex↑,ey↑とする。 時刻tにおける質点のデカルト座標をx(t),y(t)とする。 m(d^2r↑(t)/dt^2)=F↑(r↑(t),t)を(…)ex↑+(…)ey↑=0の形に整理し、運動方程式を求めよ。 d^2r↑/dt^2 = (d^2x/dt^2)ex↑ + (d^2y/dt^2)ey↑を使うと思うのですが、代入してからどうすればいいですか? 詳しい解説お願いします。

  • 固定されたデカルト座標での運動方程式

    質量mをもつ質点の、時刻tにおける位置ベクトルをr↑(t)とする。 運動方程式は、ベクトル形式でm(d^2r↑(t)/dt^2)=F↑(r↑(t),t)と表せる。 x軸、y軸方向それぞれの単位ベクトルをex↑,ey↑とする。 時刻tにおける質点のデカルト座標をx(t),y(t)とする。 r↑(t)をx(t),y(t)で表せ。 r↑=xex↑+yey↑    ここからどうすればよいのですか? 詳しい解説お願いします。

  • 極座標の問題です。

    極座標表示でr方向の単位ベクトルをer,これと直交する単位ベクトルをeθとすると       er = i cosθ + j sinθ       eθ= -i sinθ + j cosθ であらわされる。 ここで一般ベクトルAは、極座標表示でr方向成分Ar、θ方向成分Aθを用いて、       A = Ar * er + Aθ * eθ とあらわされる。θは時間変化する。 質量mの質点の運動方程式を極座標であらわせ。 速度ベクトル、加速度ベクトルは dr/dt、d^2r/dt^2 で分かったんですが、問題の運動方程式が分かりません。どなたか教えてください。

  • 物理学-三角形の微分とベクトル

    物理学の問題です。 教科書の章末問題なのですが、まったくわかりません。 解説が載ってなく、やり方を教えていただけないでしょうか? 平面極座標表示では、xy平面上を運動している質点の時間tにおける位置ベクトルr(t)と速度ベクトルv(t)はそれぞれ r(t)=r(t)Er v(t)=dr(t)/dt*Er+r(t)*dθ(t)/dt*Eθ で与えられる。ただし、|r(t)|=r(t)、θ(t)は位置ベクトルとx軸とのなす角、ErとEθ動径方向及び法線方向の単位ベクトルである。 (1)ErとEθをxy直交座標系での単位ベクトルiとjを使って書き示しなさい。 (2)時間tにおける加速度ベクトルα(t)を平面極座標表示で書き示しなさい。 お願い致します。

  • 運動方程式の変換

    極座標 r方向:動径 ∮方向:方位角 r>0 V(er)は時間の関数 V(der)/dt=(d∮/dt)V(e∮) Vはベクトル」を表しています。 なぜ、V(der)/dt=(d∮/dt)V(e∮)となるのですか? 教えて下さい。

  • 2次元極座標の速度

    2次元平面内を運動する物体がある。この物体の運動をデカルト座標を 用いて表すと、その速度は v(t)={dx(t)/dt}i+{dy(t)/dt}j  (v(t)は速度ベクトル) と表せる。但し、i,jはx軸y軸それぞれの単位ベクトルを表すものとする。 同様のことを2次元極座標を使って表すと、動径方向の単位ベクトルをer(t)、 角度方向の単位ベクトルをeθ(t)として、 v(t)={dr(t)/dt}er(t)+r{dθ(t)/dt}eθ(t) と書けることを示せ。但し、r(t)=√{x(t)^2+y(t)^2}とし、角度θ(t)は x軸から測った角度とする。(x(t)=r(t)cosθ(t),y(t)=r(t)sinθ(t)) という問題ですが、 (解)(長くなるので途中の式は省きます。) dx(t)/dt={dr(t)/dt}cosθ(t)-r(t){dθ(t)/dt}sinθ(t) dy(t)/dt={dr(t)/dt}sinθ(t)+r(t){dθ(t)/dt}cosθ(t) とそれぞれ求め、v(t)={dx(t)/dt}i+{dy(t)/dt}jに代入すると v(t)={dr(t)/dt}{cosθ(t)i+sinθ(t)j}+r(t){dθ(t)/dt}{-sinθ(t)i+cosθ(t)j}・・・ア と表せる。 er(t)=Ai+Bj eθ(t)=Ci+DjとおいてA,B,C,Dをもとめると er(t)=cosθ(t)i+sinθ(t)j・・・イ eθ(t)=-sinθ(t)i+cosθ(t)j・・・ウ アイウよりv(t)={dr(t)/dt}er(t)+r{dθ(t)/dt}eθ(t)と表せる。 という解き方をしたんですが、適切ですか? お願いします。もっといい解き方があれば教えてください。

  • 運動方程式

    質量mの質点に中心力F=-Gm(er)/r^2が働いている。 このときの運動方程式をer,eφの成分ごとにしるせという問題で・・・ この答えは  er=icosθ+jsinθ        eφ=-isinθ+jcosθ   であってますか?

  • 角運動量

    意味がまったく分からないので、説明していただけるとありがたいです。 1.質量m[1]とm[2]の質点が一定速度v[1],v[2]で運動していて、ある時刻において質点の位置はそれぞれr[1],r[2]であったとする。 (1)このときの原点周りの全角運動量ベクトルLを与えよ。 (2)(1)の結果が原点の位置には依存せず、その質点間の距離ベクトルだけに依存しているとすれば、その条件式を与えよ。 2.x-y平面状で質量mの質点が半径a、角速度ωで中心G周りの等速円運動をしている(左回り正)。 (1)中心G周りの角運動量ベクトルを与えよ。ただし、基本ベクトル(i,j,k)を使うこと。 (2)前問で中心Gが位置ベクトルrに固定されており、ある時刻においてこの粒子が円の中心からの一がae[r]であり、その動径方向との角度がφであったとき、原点(O)回りの角運動量の値(z方向を正)を与えよ。ただし、e[r]はGから質点への動径の単位ベクトルである。 (3)原点(O)回りの角運動量が最大になるときと最小になるときの位置とその値を与えよ。 よろしくお願いいたします。

  • 2次元極座標表示での運動方程式の証明

    2次元極座標表示での運動方程式の証明をやってるのですが rベクトルがあって x=rcosθ y=rsinθ というところからスタートしてます つまりrベクトルの先端の成分がx,yから始まっています x=rcosθ y=rsinθ から x''cosθ+y''sinθ=r''-rθ'^2=r''・er y''cosθ-x''sinθ=2r'θ'+rθ''=r''・eθ erはr方向の単位ベクトル eθはそれとは垂直な方向の単位ベクトルです まで行ってつまってしまいました しかし最後は Fr=m(r''-rθ'^2) Fθ=m(2r'θ'+rθ'') になっています それで答えとしてはあってるみたいですが そうなるとr''-rθ'^2と=2r'θ'+rθ''がaということになります これはどうしてそうなるのでしょうか?    'は微分記号です

  • 質点の運動方程式のベクトル表現

    質量mの質点を時刻t=0で初速度>0で水平方向に投げた。 運動はxy平面内で起こり、質点を打ち出した向きにx軸を、上向き鉛直にy軸をとり、初期の質点の位置を原点とする。質点は速度に比例した抵抗を受ける。これは -ηv→ と表現する。重力加速度をg→として (1) 質点の運動方程式をベクトルの形でかけ (2) (1)で得られた運動方程式を解き、質点の速度をtの関数として表せ (3) 質点の位置をtの関数として表せ (4) 質点がx軸方向に進むことのできる最大の距離を求めなさい。 ゆっくりとしっかり内容把握に努めたいので解答だけじゃなくて解説まで丁寧にしていただければ幸いです。