磁場内の荷電粒子の運動における位置

このQ&Aのポイント
  • 磁場内の荷電粒子の運動について、位置情報や運動エネルギーに関する問題が与えられました。
  • 問題の中で、荷電粒子の運動を表す式や条件が与えられ、それに基づいて計算を行う必要があります。
  • 特に、問2では等加速度直線運動の式を用いて、周期を運動に当てはめる必要がありますが、その理由がわかりません。
回答を見る
  • ベストアンサー

磁場内の荷電粒子の運動における位置

x,y,zの直交座標系でZ軸のせいの向きの磁束密度Bの一様な磁場があるとする。 検出器をx,z平面上に置き、y方向に向かって電子を発射するとする。 ここで粒子p(電荷e, 質量m),粒子d(電荷e,質量2m) があるとする。 pは運動エネルギー W= 1/2 mv_y^2をもって入射した。 dもpと同様にy軸方向のみの速度成分を持って原点Oを通過するものとする。 以下の問いに答えよ 1 W_dを持つdとW_pを持つpが同じ起動を描いた。W_dはW_pの何倍か 2 pとdを区別するためにy≧0の領域でz軸方向正の向きに電場Eを与えた。運動エネルギーW_pをもって入射されたpが検出される位置のx座標およびz座標を求めよ。 とありました。 1番は W= 1/2 mv_y^2 より v_y = √2W/m pはx-y平面内で等速円運動をするから x_p= 2r = 2mvy/eB = (2√2mW_p)/eB z_p=0 そしてdについても同様に x_d= (4√mW_d)/eB 同じ軌道を描いているからxp=xdより √8Wp=√16Wdから WdはWpの1/2倍 でこれは解答とあっていました。 問題は問2です。 まず、T_p=2πm/eB そしてz軸方向の加速度はmα_p=eEより α_p=eE/m よって x_p= (2√2mW_p)/eB z_p= 1/2α_p(T_p/2)^2 となっていましたが。ここです。 等加速度直線運動の式は公式より x = V_0t + 1/2 α t^2 ですよね。 なんでこのt^2の部分に周期を当てはめる場合は (T_p/2)^2をしてやらなければならないのでしょうか。 半分にしているところから 『円だから半分にすりゃいいんじゃないの?』ということしか察することが残念なのでできませんでした。 周期の時間を等加速度直線運動に当てはめる場合、なぜT/2をしたものがtと同じになるのかわかりやすく説明お願い申し上げます。 ここだけわかればこの命題は万々歳なのですがここのニュアンスがわからず困ってます。

  • ligase
  • お礼率92% (997/1082)

質問者が選んだベストアンサー

  • ベストアンサー
  • teppou
  • ベストアンサー率46% (356/766)
回答No.1

 御質問の意味を取り違えていたらすみません。  >なんでこのt^2の部分に周期を当てはめる場合は(T_p/2)^2をしてやらなければならないのでしょうか。  y方向に電子を発射すると、x,z平面に到達するまでに円運動の半周の軌跡を描くので、「x = V_0t + 1/2 α t^2」のtとして、周期の半分の時間を代入することに不思議はないと思います。  この運動は、「等加速度直線運動」ではなく、螺旋運動になります。

ligase
質問者

お礼

ありがとうございました。やっぱり半周だからなんですね。 ご回答いただいたおかげですっきりしました。 また回りくどい説明になってしまったこと失礼いたしました。 今後ともよろしくお願い申し上げます。

関連するQ&A

  • 電場磁場内での荷電粒子の運動

    XYZ座標でY方向に電場E、Z方向に磁場B荷電粒子の電化e、質量mとしたとき荷電粒子がXY平面内に放出されると初速、方向によらずX軸のある点に収束するらしいのですがこれを証明する方法はどのような方法でしょうか?教えてください

  • 電磁気学の問題です(荷電粒子の運動)

    図のように直交座標系(x,y,z)をとり、静電場E↑をy軸の方向に、静電場B↑を z軸の方向に選ぶ。 荷電粒子の速度Vは V↑=Vx↑+Vy↑+Vz↑と分解できるとする このときx,y,z方向の運動方程式をたてよ。 ただし磁束密度の大きさをB 電場の強さの大きさをE 速度ベクトルの大きさをVx,Vy.Vzとする この問題なのですが どなたか教えてください!!

  • 荷電粒子のらせん運動

    x軸方向に電界Eが、z軸方向に磁界Bが掛けられている。このくうかんに+y軸方向に諸速度v0で電荷+qをもった荷電子を打ち込んだ場合の運動。 これは 高校のときにはなんとなくで解いていたんですけど 忘れてしまいました。どうやって解くのか 教えてください。 また厳密に運動方程式を立てて解くの葉どのようにやればいいのですか? もしご面倒でなかったら教えてください。 時間の限られたテストの中で選択肢を選ぶには どちらが楽でしょうか。

  • 一様磁場内に静止している荷電粒子に時間変化する電場を印加

    どうしても解けない問題があるので、質問します。 カーテシアン座標のz軸に一様な磁場Bがかかっている。その原点に質量m、電荷qの荷電粒子が静止している。 x軸方向にEsinωtで時間変化する電場を印加したとき、荷電粒子の運動はどうなるか。 というような感じの問題なのですが・・・ 僕は次のように考えました。 m(dv^→/dt)=q(E^→+v^→×B^→) (^→はベクトルという意味) という関係がありますから、 v^→=(v_x,v_y,_v_z) B^→=(0,0,B_0) E^→=(Esinωt,0,0) と成分表示することで m(dv_x/dt)=qEsinωt+qv_yB_0 m(dv_y/dt)=-qv_xB_0 m(dv_z/dt)=0 という運動方程式が立てられるではないか?と そして、それを解こう!っとしたんです。 ところが・・・ v_yについての微分方程式を導くと 駆動項を持つ2階の微分方程式?となり解くのにものすごく時間がかかる! 考え方は合っているでしょうか? もし間違っているなら、訂正してほしいです・・・ それを解けば答えが導けるというなら意地でもやって見せますが、なかなか式を目の前にして、合っている自信がなく、解くまでに至らないのです。 よろしくおねがいします!

  • 磁場中の電子の運動

    xyzの3次元座標において、+z方向には磁束密度の大きさBの磁場がある。 時刻t=0に原点Oを質量m、電気量-e(<0)の電子が+x方向に速さv0で入射する。 (1)時刻tにおける電子の速度v=(vx,vy,vz)として、時刻tにおける電子の運動方程式を各成分に対して書け。 (2)(1)で得られた式をtで微分することにより、vxが従う微分方程式を導け。このことと初期条件から、vx、vy、vzをtの関数で表せ。 (3)時刻tにおける物体の位置をr=(x,y,z)とするとき、x、y、zをtの関数として表せ。このことから電子の軌跡の方程式を求めよ。 この問題なんですが、 m(dv/dt)=q(v×B)なので(1)は m(dvx/dt)=m(dvz/dt)=0 m(dvy/dt)=ev0B だと思ったのですが、それだと(2)にあいませんよね? 運動方程式を書いて更にそれを微分して微分方程式にするというのはどういう意味なのでしょうか?

  • 運動エネルギーと座標変換

    運動量や角運動量保存について学んでいるのですが、それ等の法則と座標系についての関係についてよく分かりません。 運動エネルギーを一般座標系を位置座標X,Y,Zで表示すれば T=m/2(x'^2+y'^2+z'^2) x'=dx/dt と、一般座標が一切入らず、一般速度だけで表すことが出来るはずです。 しかし、一般座標系を例えば球面座標系(r、θ、φ) として表せば T=m/2(r'^2+(rθ')^2+(rsin(θ)φ')^2) と、一般座標rとθが入り混じった形式になってしまいます。 つまり、デカルト座標、X,Y,Zを使えば、自由運動をしている粒子の運動量がX,Y,Zと3方向保存されるのに、 球面座標系で表せば、φしか循環座標ではないので、 Z軸に対しての角運動量が保存される、と言えると思います。 そこで、疑問なのが、まず 1)デカルト座標系での例で、 「運動エネルギーは位置座標によらない」 と示唆しているような気がします。 しかし、球面座標系では 「運動エネルギーは位置座標に依存している(rとθ)」 と結論ずけている気がします。 この両者は矛盾しているのではないでしょうか? 2) 何故運動保存が座標系によって変わるのか。 粒子の運動と言うのは物理的に存在しているのであって、座標系を変えることでその運動自体は変わらないのに、保存される量が変わると言うのは直感的に理解出来ません。 3) 後、何故φに対する運動量は保存され、θに対する運動量は保存されないのか。(循環座標ではないのか)。 言ってみれば、φはZ軸のまわりの角度を表し、θは(例えば)X軸やY軸の周りの角度を表しているはずです。 何故φの運動量だけが保存されるのか分かりません。 どなたかご教授して頂ければ幸いです。 長文乱文失礼いたしました。 よろしくお願いします。

  • 力を受ける質点の運動とその座標

    学校の宿題で下のような問題が出されたのですが、どのように手をつけていいのか全くわかりません。 どうか解き方だけでも教えてください。 t=0で(x,y)=(0,0)にあった質点が、初速度v=(v0,0)で力F=(0,-mg)を受け運動を始めた。質点が速度を持つと速度に比例した抵抗を受けるものとする。ただしmは質点の質量、gは重力加速度である。また、鉛直上方がy軸の+方向、水平右方がx軸の+方向となるように座標軸をとるものとする。 (1)運動方程式を解いて時刻t=Tでの質点の各座標を求めなさい。 (2)時間がいくら経ってもx座標はある一定値以上にならないことを示しなさい。その一定値はいくらか? 他の条件は一切言われてません。 どのような大きさの抵抗を受けるとか、どうしてx座標がある一定値以上にならないのかなど、全然わからずお手上げ状態です・・・

  • 解析力学:間違いを教えてください

    解析力学を勉強中です。 単振り子で、極座標(r,θ)のθ方向についてのラグランジュ方程式を立ててNewtonの運動方程式を導出する例題がありました。 (運動エネルギー T = (1/2)m(Rθ')^2  ポテンシャルエネルギー U = mgR(1-cosθ)  として L=T-U をθ方向のラグランジュ方程式に代入する方法です。) この方法は理解できたのですが、極座標ではなく直交座標(x,y)で考えるとどうもうまくいきません。 水平方向にx軸、鉛直方向にy軸をとって T = (1/2) m (x'^2 +y'^2), U = mgy として L = T-U をラグランジュ方程式に代入すると、 ・x方向:(d/dt)(mx')=0 ・y方向:(d/dt)(my')=-mg となり、x方向に等速運動、y方向に等加速度運動というおかしな結果になってしまうんです。 どこか何が間違えているのかご教授いただけると幸いです。 よろしくお願いします。

  • 微小電流が作る磁場。

    無限に長い直線電流Iがつくる電場を、ビオサバールの法則より求めよ。 という問題につまづいてなのですが。 解答では、 まず電流に沿って、Z軸をとり、Z軸上の適当な点Oを原点とし、点OからZ軸に垂直な方向に距離rだけ離れた点Pにおける磁場を考える。Z軸上の座標zの点Zに長さdzの微小電流Idzをとり、この微小電流が点Pにつくる磁場をdHとする… という記述があるのですが、電流が作る磁場って、電流の方向に対して垂直に円を描くように広がるような磁場を作るのではなかったでしょうか?そうすると、点Zから垂直の方向には点Pはない(点Pは点Oに垂直になるように取った。x-y-z座標で言えば(r,0,0))ので、微小電流は点Pには磁場は作らないような気がするのですが…。 よろしくお願いします。

  • 固定されたデカルト座標での運動方程式

    質量mをもつ質点の、時刻tにおける位置ベクトルをr↑(t)とする。 運動方程式は、ベクトル形式でm(d^2r↑(t)/dt^2)=F↑(r↑(t),t)と表せる。 x軸、y軸方向それぞれの単位ベクトルをex↑,ey↑とする。 時刻tにおける質点のデカルト座標をx(t),y(t)とする。 m(d^2r↑(t)/dt^2)=F↑(r↑(t),t)を(…)ex↑+(…)ey↑=0の形に整理し、運動方程式を求めよ。 d^2r↑/dt^2 = (d^2x/dt^2)ex↑ + (d^2y/dt^2)ey↑を使うと思うのですが、代入してからどうすればいいですか? 詳しい解説お願いします。