- ベストアンサー
- 困ってます
2次方程式の問題です
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- gohtraw
- ベストアンサー率54% (1630/2966)
時間tにおいてAPの長さは2tなので、このときの△APRの面積は 2t^2 またこのときのPBの長さは10-2tなので△PBQの面積は (10-2t)^2/2 両者の和が26なので 2t^2+(10-2t)^2/2=26 この二次方程式を解いて下さい。
関連するQ&A
- 数学を教えてください!
図で、四角形ABCDは∠ABC=124°の平行四辺形、△BECは∠CBE=90°の直角二等辺三角形、△DCFは∠FDC=90°の直角二等辺三角形である。このとき、次の問いに答えなさい。 △BAE≡△DFAであることを証明しなさい。 また、∠EAFの大きさを求めなさい。 考え方、答えを教えてください!
- ベストアンサー
- 数学・算数
- どうして、解るのかわかりません。
BC=20CM、AB=AC、∠A=90°の直角二等辺三角形ABCがある。 辺AB上に点D、辺AC上に点Eをとり、辺BC上には、二点F、Gを順に取る。 四角形DFGEが面積48CM2の長方形であるとき、辺DFの長さを求めよ。 問題の答えはどうしてそうなるかわかるのですが、解説の次の部分がわかりません。 「△ABCは直角二等辺三角形であるから∠A=90°∠B=∠C=45°である。{よって△FDB、△GCEも直角二等辺三角形である}」 {}の部分がわかりません。 どうして△ABCが直角二等辺三角形であるから、上記 つの三角形も直角二等辺三角形であると言えるのでしょうか?
- 締切済み
- 数学・算数
- 平行四辺形、二等辺三角形
平行四辺形、二等辺三角形 どちらも辺と辺の関係に注目した形の分類ですが、四角形である平行四辺形はわざわざ「四辺形」と称するのに対し、二等辺三角形はなぜ二等辺”三辺形”とは呼ばないのでしょうか? あるいはなぜ平行四角形とは呼ばないのでしょうか? 日常では三角形、四角形、五角形、六角形と角の数で形を言い表して、四角形も特別な特徴を見出さない場合は四角形です。 三角形もわざわざ2辺の長さが等しい特徴を見出しても二等辺三角形と角の数で形を表してします 平行四辺形だけが例外的に辺の数で形を表す言葉を用いるのはなぜなのでしょか???
- ベストアンサー
- 数学・算数
- 数学を教えてください!
図の四角形ABCDは、AD=90cmの平行四辺形である。この平行四辺形の辺上を、点Pは毎秒7cmの速さでAからDまで動き、点Qは毎秒5cmの速さでBからCまで動くものとする。二点P、Qが同時に出発してから何秒後にAQIIPCとなりますか。
- ベストアンサー
- 数学・算数
- 辺の長さを教えてください!
図において、△ABC、△DBEはいずれも∠B=90°の直角二等辺三角形であり、点Eは辺AC上にある。2点A、Dを結んでできる四角形ADBEの面積が10平方cmであるとき、辺BCの長さを求めよ。 という問題です。どうがんばっても解けません。教えてください。お願いします。
- ベストアンサー
- 数学・算数
- 中学受験の算数問題(図形)を教えてください
中学受験用の算数問題がわからず困ってます。解法を教えてください。 【問題1】図のような直角三角形ABCと二等辺三角形ADEがあります。ADとDFが平行なとき、四角形BFEDの免責を求めなさい。 【問題2】図でABCDは平行四辺形の時、△FECの面積を求めなさい。 【問題3】四角形ABCDは長方形で、M,Nは各辺の中点です。網目部分の面積の和を求めなさい。
- ベストアンサー
- 数学・算数
- 小学校で習う図形について
三角形,四角形,正方形,長方形,ひし形,平行四辺形,台形,正三角形,二等辺三角形,直角三角形,円は,小学校の算数ではどのように定義されているのでしょうか。 三角形は,「三つの辺に囲まれた図形」なんて小学校では言いませんよね…。 それから,算数では,二等辺三角形,平行四辺形,円などの図形のどんな性質を調べるのでしょうか。 ご存知のところだけでもいいので,教えて下さい。困ってます!
- 締切済み
- 数学・算数
- 助けてください、数学の問題が解けません
お世話になっております 学校の宿題がわからないから教えてと 甥っ子から質問をされたんですが、解けずに困っています助けてください △abc,△dbeはいずれも∠b=90の直角二等辺三角形、点eは辺ac上にある 二点a,dを結んでできる四角形adbeの面積が10平方センチメートルのとき 辺bcの長さはいくつですか
- ベストアンサー
- 数学・算数
- 証明を教えてください!
図の△ABCは、AB=ACの直角二等辺三角形である。辺BC上に点Dをとり図のように、AD=AEとなる直角二等辺三角形ADEをつくり、DEとACとの交点をFとする。 このとき「BD=CE」であることを証明しなさい。 という問題です。教えてください!
- ベストアンサー
- 数学・算数