- ベストアンサー
2直線に接する円
直線m:y=x-1/4 直線n:y=-7x-49/4 に接する円(x-a)^2+(y-b)^2=r^2(r>0) がある。 この時円の中心(a,b)はある2本の直線のいずれかの上にある。 それら2本の直線の方程式を求めなさい。 できれば詳しくお願いします。 一時間くらい悩んでとけませんでした(ToT) いろいろ問題集をあさったのですが、同じような問題も見つけることができず… どうかよろしくお願いします
- みんなの回答 (2)
- 専門家の回答
直線m:y=x-1/4 直線n:y=-7x-49/4 に接する円(x-a)^2+(y-b)^2=r^2(r>0) がある。 この時円の中心(a,b)はある2本の直線のいずれかの上にある。 それら2本の直線の方程式を求めなさい。 できれば詳しくお願いします。 一時間くらい悩んでとけませんでした(ToT) いろいろ問題集をあさったのですが、同じような問題も見つけることができず… どうかよろしくお願いします
お礼
rは定数ということで式の中に残っていてもいいんですよね?!ありがとうございます!解決しました!