• 締切済み

数A 整数の性質

kを2以上の整数とする。2からkまでの整数のうち、kと互いに素であるものの個数をNとする。 例えば、k=5とすると2から5までの整数のうち、5と互いに素であるものは2、3、4で あるから、N=3である。 (1)k=7のとき、Nを求めよ。また、k=14のとき、Nを求めよ。 (2)pを7でない素数とする。k=7pのとき、Nを求めよ。 (3)p、qはともに素数であり、p<qとする。k=pqのとき、N=11を満たすp、qの組(p、q)をすべて      求めよ。 この問題があまり分かりません。解答・解説を見ても分かりませんでした。 分かる方がいれば、解説まで教えて下さい。 宜しくお願いします。

noname#206828
noname#206828

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

「2から」がちょっといやらしいので「1から」と思って考えることを勧める. 本質的に「指折り数える」くらいしか解説のしようもないけど.

noname#199771
noname#199771
回答No.1

>解答・解説を見ても分かりませんでした。 どこが分からないのか書いてください。 「解答には○○○と書いてあったが△△の部分 がなぜ□□□になるのか分からない」のように。 その情報がないと回答の書きようがないです。 なぜなら、解説を書いてもあなたの持っている 解答と大差ないのならあなたはやはり分から ないはずですよね。

関連するQ&A

  • 数学1A 整数の性質の問題です。

    (x-n)(ay-n)=n^2ー(✳︎) ※n^2はnの二乗です。 pを素数とし、a=1、n=pとする。 (✳︎)を満たす整数x、yの組は全部で「タ」個ある。このうちyが最大となるものは、 x=p+「チ」、y=p(p+「ツ」)である。 このとき、yを4で割ったときの余りが2となるような40以下の素数pは全部で「テ」個ある。 タ=6 チ=1、ツ=1 テ=6 ツまでの答えは求められたのですが、最後のテが求められませんでした…。 解答解説よろしくお願いします!

  • 1違いの整数の性質

    1違いの整数は互いに素である。 なぜなら、最大公約数をgとすると n=αg、n-1=βg(α、β、nは整数) n-(n-1)=(α-β)g、1=(α-β)gで、gが1になる。 ということなのですが、αとβの差が1になるのはなぜなのでしょうか?? どなたかお願いします。

  • 高校数学の整数問題です

    [問題] 素数pに対してpx^2+xが整数となるような有理数xをすべて求めよ。 これを取り扱った授業では次のような解説がありましたが、(4)の式から【 】部へともっていく論理の展開が分かりません。  ―・―・ー・―・― [解答] xは有理数ゆえ、x=n/m …(1) とおける。 (m,nは互いに素な整数で、m>0 …(2)) これを与式に代入して、 p(n/m)^2+(n/m)=k (k:整数) …(3) とすれば、 k=(pn^2+mn)/m^2 ={n(pn+m)}/m^2 …(4) 【mとnは互いに素ゆえ、kが整数となるには素数pがmの倍数、つまりmはpの約数であることが必要。】  ∴m=1 or p (i) m=1のとき (4)よりk=n(pn+1)となるから、n,pは整数より、kも整数となり成立。 このとき(1)より x=n (ii) m=pのとき (4)よりk={n(pn+p)}/p^2={n(n+1)}/p m(=p)とnは互いに素より、n+1がpの倍数と分かり n+1=pl (l:整数) …(5) とおけば、k=nl(=整数) となる。 このとき(1)、(5)より x=n/m=(pl-1)/m =(pl-1)/p=l-(1/p) 以上(i)、(ii)より x=n または x=l-(1/p) (n,lは任意の整数)  ―・―・―・―・― 僕の思考回路としては、(4)の式を見て、kが整数ということは 分子のn(pn+m)がm^2を因数にもつ、 つまりn(pn+m)=●m^2 (●:整数) と考えたのですが、この後の進め方が分からず手が止まりました。 解説の論理展開の意味がお分かりの方、ご教授ください。

  • p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq

    p,qが素数のときn^{(p-1)(q-1)+1}≡n (mod pq)になりますか? nがpともqとも互いに素であるときは、 Fermatの小定理を使えばn^{(p-1)(q-1)}≡1 (mod pq) が言えるので、標記の命題は言えると思うのですが pまたはqのいずれか一方がnと互いに素でないとき n^{(p-1)(q-1)}≡1 (mod pq)は言えないものの n^{(p-1)(q-1)+1}≡n (mod pq)は言えてしまっているように思えます (私がやったケースはp=3,q=11の場合です)。 これは正しいのでしょうか? 正しいとしたら何故ですか?

  • 参考書の整数問題で疑問があります

    x^3-3x-1=0…(*)は、有理数解を持たないことを示せ。 考えは、 整数でない有理数解をもつと仮定すると、その解はp/q(p、qは互いに素の整数、q≧1)とおける。(*)に代入して両辺にq^3をかけるとp^3-3pq^2-q^3=0 p^3=q(3pq+q^2)…(**) 質問1:この式からは、、左辺はpの倍数だから、右辺はpの倍数で、しかしp、qは互いに素なので (ア)q=1 または (イ)q≠1かつ3pq+q^2はpの倍数 という独立した2つの条件が得られるという理解でいいですか? 質問2:参考書は、(ア)の条件だけ考えて、解がp/1(整数)だから前問に矛盾。としてましたが、(イ)は考えなくていいのですか?? 数学は得意ではないので教えてください…

  • 整数問題

    正の整数nに対して、1以上n以下の整数で、nとの最大公約数が1 になるもののすべての和をs(n)とするとき、s(n)が素数となるすべての nを求めよ。 n=3以外にはないように思いますが、答えはあっているでしようか。 考え方はnとaが互いに素の場合、nとn-aも互いに素であることを 使いました。

  • a,b,p,qはすべて自然数で,aとbは互いに素であり、

    a,b,p,qはすべて自然数で,aとbは互いに素であり、 (p^2+q^2)/a=(pq)/b をみたしている。 (1)pqはbで割り切れることを示せ。   これは、わかりました。 (2)√(a+2b)は自然数であることを示せ。 方針としては、√(a+2b)が平方数でることを示そうと   考えましたが、途中で挫折しました。   (1)から、pq=kb ・・(1)(kは自然数)とおくと   p^2+q^2=ka ・・(2)となる。 (1)×2+(2)より、(p+q)^2=(a+2b)k・・(3)   (2)-(1)×2より、(p-q)^2=(a-2b)k・・(4)  (3)と(4)より、(p+q)^2*(p-q)^2=(a+2b)(a-2b)k^2 (a+2b)(a-2b)={(p+q)^2*(p-q)^2}/k^2 左辺は整数より、(a+2b)(a-2b)=s^2 sは自然数 とおける。  次に、(a+2b)と(a-2b)が互いに素だとa+2bは平方数がいえるのかと  思いましたが、できませんでした。解答がこの流れでいいのか、  また、別の視点が必要なのか、よろしくおねがいします。

  • 代数学の問題です

    p,q,k:整数とする。 p,qは互いに素である。 <x>:xの非整数部分とする。 例 <4.7> = 0.7 このとき k*q ≦ n < (k+1)*q <n*p/q> = a/q  (0 ≦ a < q) となるような整数 n が唯一つ存在する事を証明せよ。 k=0と仮定できるのはなぜか? 自分なりにp,qが互いに素であることより p*x+q*y=1 となる事を考えて利用しようと思ったのですが見当違いのせいかうまくできませんでした。 どなたかこの問題の解答の分かる方のご解答をお待ちしております。

  • x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて

    x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて、 a^2+b^2=p^2を満たす互いに素なa,bは必ず存在するでしょうか? 換言しますと、奇素数pについて 「x^2+y^2=n×pとなる整数の組x,y,nが存在する」と 「a^2+b^2=p^2となる互いに素な自然数の組a,bが存在する」は同値でしょうか? 先ほど似た質問をさせていただいたのですが、 http://okwave.jp/qa/q6216192.html 私が確認してるのは「互いに素」でしたので改めて質問し直しました。 私の確認したところでは 2平方数の和がpの倍数にならないもの→3,7,11,19 2平方数の和がp倍数になり、且つp^2を満たすa,bが存在するもの→5,13,17 3^2+4^2=5^2, 5^2+12^2=13^2, 8^2+15^2=17^2

  • 整数の性質について

    ↓の証明がどうしても分かりません。 (1)ある自然数の平方とその数の和は偶数であることを連続する2つの自然数の積は偶数になることを利用して証明しなさい。 (2)3つの連続する整数では中央の数の2乗より1小さい数は両端の数の積と等しいことを証明しなさい。 (1)はある自然数をnとするとnの二乗+n=偶数になればいいんですよね?? (2)は整数をnとすると連続する3つの整数は(n-1)、n、(n+1)。 nの二乗-1=(n-1)(n+1)でいいんですか?? (1)も(2)も続きが分かりません。 どなたか教えてください!!お願いします。