• 締切済み

楕円の正規化条件

今、楕円の最小二乗法のプログラムを書いているのですが、正規化条件の扱いがよくわかりません。 単純に u = (A B C D E F)         (1) ξ = (x^ 2 2xy y^2 2x 2y 1)    (2) で、 行列 M = (1 / N ) Σ ξ・ξt    (3)  ξt:ξの転値    N:Σの数 の最小固有値に対する固有ベクトルをuとして採用するという計算をしているのですが、放物線になってしまいました。 標準的には A^2 + B^2 + C^2 + D^2 + E^2 + F^2 = 1  (4) が正規化条件として使われる、とあるのですが、これをどう扱っていいかわからないのです。 この論文を参考にしています http://www.iim.cs.tut.ac.jp/~kanatani/papers/newlsellipse.pdf

みんなの回答

  • ramayana
  • ベストアンサー率75% (215/285)
回答No.4

「(N^-1)Mu = λu の最小固有値に対する固有ベクトルを求めれば良いのでしょうか?」 N が正則行列(逆行列を持つ行列)と限らないので、(N^(-1))Mu = λu という形への変形は不可能と考えるべきでしょう。引用論文の 2 ページに (3) から (8) まで 6 種類の正規化の例が挙げられていますが、 (5) を除く 5 種類では、 N が非正則行列(逆行列を持たない行列)になります。ANo.3 の N も非正則行列です。 それより、次のようにして普通の固有値の計算に帰着させることができます。まず、M が正則行列であることを仮定します。観測データには誤差が付きものですが、観測データに誤差があれば、M は必ず正則行列になります。 すると、引用論文 2 ページの (15) 式 Mu = λNu は、 M^(-1)N u = (1/λ)u と変形できます。そこで、行列 M^(-1)N の絶対値最大の固有値に対応する固有ベクトルを計算すれば、それが u になるのです。 なお、1/λ は、M^(-1)N の固有値です。もともと絶対値が最小のλを求めることになっていたので、その逆数である 1/λ に関しては、絶対値が最大のものを求めることになります。

  • ramayana
  • ベストアンサー率75% (215/285)
回答No.3

「(8)式を条件とした場合、重み行列Nはどうなるのでしょうか?」 添付図の通り。このNが (A B C D E F)N(A B C D E F)^t = AC – B^2 を満たす対称行列であることを確認してください。((A B C D E F)^t は、(A B C D E F) の転置)

wrusagi
質問者

補足

ありがとうございます。 重み行列を使う場合は、 Mu = λNu (15) の最小固有値に対する固有ベクトルを求める、とのことですので (N^-1)Mu = λu の最小固有値に対する固有ベクトルを求めれば良いのでしょうか?

  • ramayana
  • ベストアンサー率75% (215/285)
回答No.2

「M の最小固有値に対する固有ベクトルをuとして採用する」という方法では、   Ax^2+2Bxy+Cy^2+2(Dx+Ey)+F=0 で表される曲線が楕円であるという条件、すなわち、Ax^2+2Bxy+Cy^2 の部分が正定値2次形式であるという条件、さらに言い換えれば、AC-B^2>0 であるという条件を、どこにも使っていません。だから、推計結果が放物線や双曲線になっても何の不思議もありません。   A^2 + B^2 + C^2 + D^2 + E^2 + F^2 = 1 の条件の代わりに、引用論文の(8)式   AC-B^2 = 1 を条件とすれば、楕円だけが推計されます。 なお、A^2 + B^2 + C^2 + D^2 + E^2 + F^2 = 1 をどう扱っていいか分からない、ということですが、これは、引用論文の「重み行列N」を単位行列にする、ということです。ご質問の計算は、まさに、N を単位行列にとしておられます。

wrusagi
質問者

補足

詳しくありがとうございます。 (8)式を条件とした場合、重み行列Nはどうなるのでしょうか?

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

その解法は、よく知らないが、 固有ベクトルを解にするのなら、 長さを決める規則は必要でしょう?

関連するQ&A

  • 数学の問題の出典

    数学の問題の出典 ある数学の問題なんですが、出典がわからないので解答がわからず悶々としています。わかる方がいらっしゃったらぜひ教えてください。よろしくお願いします。 放物線 C:y^2=-2xと,Cと合同な放物線Dがある。Dは,最初,放物線y^2=2xに一致しており,Cに接しながら滑ることなく反時計回りに回転する。このとき,放物線Dの頂点Pが描く曲線をEとする。 (1) CとDの接点の座標が(-t^2/2,t)であるときの点Pのx座標,y座標を                x=f(t),y=g(t)    と表す。f(t),g(t)を求めよ。また,極限値         lim f(t) (t→∞)    を求めよ。 (2)(1)で求めた極限値をaとする。0<u<aを満たす実数uに対して,曲線Eとx軸,直線x=uによって囲まれた部分の面積をS(u)とするとき,極限値          lim S(u)(u→a-0)    を求めよ。

  • 高校数学の問題です

    (1). 放物線C1:y=2x^2をx軸方向にa,y軸方向にbだけ平行移動すると、放物線C2:y=2x^2-4x+cとなり、次にこれを直線y=2に関して対象移動すると、C3:y=-2x^2+dx-1となる。 a,b,c,dをもとめよ。 (2).二次関数 f(x)=x^2-4x+1(t≦x≦t+1)の最小値をm(t)とする。  m(t)の式を求めよ。 途中式もお願いします。  

  • 実数条件と2次方程式

    x+y=u,xy=vと置き換えるとき x,yが実数であればuとvにどのように条件を引き継ぐかを考えます ある参考書によると x,yが実数 ⇔x+y,x-yが実数 ⇔uが実数、(x-y)^2=(x+y)^2-4xy>=0 ⇔uが実数、u^2-4v>=0 と書いてありました しかしここでまず疑問に思ったのが、一般的にtについての2次方程式の 解の条件に帰着する方法で考えると思うのですが、それで同値変形してみると x,yが実数 ⇔tについての2次方程式t^2-ut+v=0が2実解を持つ ⇔D>=0 となりuが実数という条件が出てきません どこがおかしいのか教えていただきたいと思います また、x,yが実数であり0<x<1,0<y<1という条件を同様に考えて変形すると x,yが実数、0<x<1,0<y<1 ⇔tについての2次方程式t^2-ut+v=0(=f(t)とおく)が0<t<1に2実解を持つ ⇔D>=0,軸>0,f(0)>0,f(1)>0 というようになります これは正しい同値変形なのでしょうか 合わせてご教授お願いします 判別式Dが実数係数の式でしか使えないということが関係しているのか とも思うのですが、やはりよくわかりません よろしくお願いいたします

  • 楕円

    楕円{(x^2)/(a^2)}+{(y^2)/(b^2)}=1(但しa>0,b>0)の接線がx軸、y軸と交わる点をそれぞれP,Qとするとき、線分PQの長さの最小値を求る問題で {(x^2)/(a^2)}+{(y^2)/(b^2)}=1から 楕円の公式より a>bのとき横長楕円で 原点(0,0) 長軸の長さ2a 縦軸の長さ2b 焦点F1(c,0)  F2(-c,0) 直線上の点をPとおくとPF1+PF2=2aを利用すると思うのですがよく分かりません 参考書の解説を載せておきます 接点の座標(x0,y0)とする。 図形の対象性および接線が両軸と交わることからx0>0かつy0>0 {(x0x)/(a^2)}+{(y0y)/(b^2)}=1 (PQ)^2=【{(a^4)/(x0^2)}+{(b^4)/(y0^2)}】*【{(x0)^2/(a^2)}+{(y0)^2/(b^2)}】≧【{(a^2)/(x0)}*{(x0)/(a)}*{(b^2)/(y0)}*{(y0)/(b)}】^2 =(a+b)^2 等号は {(a^2)/(x0)}:{(b^2)/(y0)}=(x0/a):y0/b) より (x0,y0)=【{√a^3/a+b)},{√b^3/a+b)}】のとき成立 求める最小値はa+b と書いてあるのですがよく分かりません。 誰か教えてくれませんか?

  • 指数分布・条件付確率

    「Xの分布=Yの分布=Exp(1)のとき、P(Y≧3X)を求めよ」 という問題についてですが、まず Xの確率密度関数:f(x)=e^(-x) (x>0) Yの確率密度関数:g(y)=e^(-y) (y>0) と表せます。 解答では、 P(Y≧3X) =∫[-∞~∞]P(Y≧3X|X=t)*f(t)dt =∫[0~∞]P(Y≧3X|X=t)*e^(-t)dt  (★) =∫[0~∞]P(Y≧3t)*e^(-t)dt    (▲) =∫[0~∞]{∫[3t~∞]g(u)du}*e^(-t)dt =∫[0~∞]{∫[3t~∞]e^(-u)du}*e^(-t)dt =1/4 となっています。 疑問なのは★→▲への計算なのですが、 条件付確率の条件が外れるということは、XとYが独立だということになります。 しかし、問題文の1行からはXとYが独立とは、私には読み取れないのです。 私が読み取れないだけで、独立という設定なのでしょうか? それとも、指数分布の性質により独立と判断できるのでしょうか?

  • 二次元拡散方程式の一般解が求まりません

    二次元拡散方程式の一般解が求まりません すみません、拡散方程式で解けない問題がありまして、どなたかご教授ください。 u(x,y,t)の位置(x,y)と時間(t)のみに依存する関数があり、 拡散方程式 ∂u/∂t=D*(∂^2u/∂x^2+∂^2u/dy^2)  (Dは定数) (0<x<a , 0<y<b) 境界条件は、u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(a,y,t)=0.0 ,u(x,b,t)=0.0 です。 初期条件は u(x,y,0)=f(x,y) です。 変数分離 u(x,y,t)=X(x)Y(y)T(t) 代入後uで両辺を割る T´/(D*T)=X´´/X+Y´´/Y 後はD*X´´/X=α、D*Y´´/Y=β (α、β、kは定数)ここで,k=-(α+β)とおく。 の3つの微分方程式を解いて初期条件、境界条件を用いて定数を決定します。 X(x)=Acos√αx+Bsin√αx Y(y)=Ccos√βy+Dsin√βy とおいて、境界条件を代入し X(0)=X(a)=0 Y(0)=Y(b)=0 X(a)=Bsin√αa=0 α=(nπ/a)^2 (n=1,2,・・・) Y(b)=Dsin√βb=0 β=(nπ/b)^2 (n=1,2,・・・) 境界条件u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(a,y,t)=0.0 ,u(x,b,t)=0.0がときのものは 一般解を求められました。 次に, 境界条件u(0,y,t)=0.0 , u(x,0,t)=0.0 ,u(a,y,t)=1.0 ,u(x,b,t)=0.0のときの一般解を求めたいのですが、上手く出来ません。 X(x)=Acos√αx+Bsin√αx Y(y)=Ccos√βy+Dsin√βy とおいて、境界条件を代入し X(0)=0 X(a)=1 Y(0)=Y(b)=0 X(a)=Bsin√αa=1 Y(b)=Dsin√βb=0 β=(nπ/b)^2 (n=1,2,・・・) X(a)=Bsin√αa=1をどう解けばいいのか分かりません。 ご教授お願いします。

  • 大学数学の方程式の質問

    数学の問題に関しての質問です。詳しい方にご回答お願いいたします。 私自身しっかり理解して、自分で出来るようになりたいので、なるべく詳しい解説と解答をお願いします。 1.関数u(x,y)に対しU(r,θ)=u(rcosθ,rsinθ)とおく。u(x,y)が{d^2u/dx^2}+{d^2u/dy^2}=0を満たすことと、U(r,θ)が{d^2U/dr^2}+{dU/dr}/r + {d^2U/dθ^2}/r^2 =0を満たすことは同値であることを示せ。 ここでr>0とし(x,y)≠(0,0)とする。 2.u(x,y)=log{√(x^2+y^2)}は、(x,y)≠(0,0)のとき{d^2u/dx^2}-{d^2u/dy^2}=0をみたすことを示せ。 3.u(x,y)が√(x^2+y^2)<1で{d^2u/dx^2}+{d^2u/dy^2}=0を満たしているとする。V(x,y)=u{x/(x^2+y^2),y/(x^2+y^2)}は√(x^2+y^2)>1で{d^2V/dx^2}+{d^2V/dy^2}=0をみたすことを示せ。 4.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3/2)(x≧0)のグラフを描け。 5.E(x,t)(t>0)を E(x,t)=exp(-x^2/4t)/2√(πt) で定義する。 f(x)をx∈Rで定義された連続で有界な関数とする。 初期条件 u(x,0)=f(x)(x∈R) …(1) をみたす熱伝導方程式 {∂u(x,t)/∂t}-{∂^2u(x,t)/∂x^2}=0,t>0,x∈R …(2) を解u(x,t)をE(x,t)を用いて表せ。 m,Mを定数として関数f(x)がR上でm≦f(x)≦Mを満たせば、E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)もt>0でm≦u(x,t)≦Mとなることを示せ。 次に、関数f(x)がR上でf(-x)=f(x)を満たしているとする。E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)は、t>0で∂u(0,t)/∂x=0を満たすことを示せ。 (∫exp(-x^2)dx=√πであることは、自由に用いてもよい。(積分区間は-∞から∞)) 6.移流方程式 {∂u(x,t)/∂t}-{∂u(x,t)/∂x}=0 を-∞<t<∞、-∞<x<∞で考える。初期条件 u(x,0)=sin(x)、-∞<x<∞ を満たす解を求めよ。 7.sをパラメータとして、波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0 の解で、初期条件 u(x,s)=0,-∞<x<∞ ∂u/∂t=sin(x+s) ,-∞<x<∞ をみたす解u(x,t)を求めよ。その解をU(x,t,s)で表すとして、v(x,t)=∫U(x,t,s)ds(区間は0からt)を計算せよ。 そして、v(x,t)が非斉次の方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=sin(x+t) を満たすことを示せ。 8.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3)(x≧0)のグラフを描け。 お願いします!(>人<)

  • 大学数学の方程式

    数学の問題に関しての質問です。詳しい方にご回答お願いいたします。 私自身しっかり理解して、自分で出来るようになりたいので、なるべく詳しい解説と解答をお願いします。 1.関数u(x,y)に対しU(r,θ)=u(rcosθ,rsinθ)とおく。u(x,y)が{d^2u/dx^2}+{d^2u/dy^2}=0を満たすことと、U(r,θ)が{d^2U/dr^2}+{dU/dr}/r + {d^2U/dθ^2}/r^2 =0を満たすことは同値であることを示せ。 ここでr>0とし(x,y)≠(0,0)とする。 2.u(x,y)=log{√(x^2+y^2)}は、(x,y)≠(0,0)のとき{d^2u/dx^2}-{d^2u/dy^2}=0をみたすことを示せ。 3.u(x,y)が√(x^2+y^2)<1で{d^2u/dx^2}+{d^2u/dy^2}=0を満たしているとする。V(x,y)=u{x/(x^2+y^2),y/(x^2+y^2)}は√(x^2+y^2)>1で{d^2V/dx^2}+{d^2V/dy^2}=0をみたすことを示せ。 4.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3/2)(x≧0)のグラフを描け。 5.E(x,t)(t>0)を E(x,t)=exp(-x^2/4t)/2√(πt) で定義する。 f(x)をx∈Rで定義された連続で有界な関数とする。 初期条件 u(x,0)=f(x)(x∈R) …(1) をみたす熱伝導方程式 {∂u(x,t)/∂t}-{∂^2u(x,t)/∂x^2}=0,t>0,x∈R …(2) を解u(x,t)をE(x,t)を用いて表せ。 m,Mを定数として関数f(x)がR上でm≦f(x)≦Mを満たせば、E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)もt>0でm≦u(x,t)≦Mとなることを示せ。 次に、関数f(x)がR上でf(-x)=f(x)を満たしているとする。E(x,t)を用いて表された(1)を満たす(2)の解u(x,t)は、t>0で∂u(0,t)/∂x=0を満たすことを示せ。 (∫exp(-x^2)dx=√πであることは、自由に用いてもよい。(積分区間は-∞から∞)) 6.移流方程式 {∂u(x,t)/∂t}-{∂u(x,t)/∂x}=0 を-∞<t<∞、-∞<x<∞で考える。初期条件 u(x,0)=sin(x)、-∞<x<∞ を満たす解を求めよ。 7.sをパラメータとして、波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0 の解で、初期条件 u(x,s)=0,-∞<x<∞ ∂u/∂t=sin(x+s) ,-∞<x<∞ をみたす解u(x,t)を求めよ。その解をU(x,t,s)で表すとして、v(x,t)=∫U(x,t,s)ds(区間は0からt)を計算せよ。 そして、v(x,t)が非斉次の方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=sin(x+t) を満たすことを示せ。 8.x>0,t>0で波動方程式 {∂^2u/∂t^2}-{∂^2u/∂x^2}=0をみたし 境界条件 ∂u(0,t)/∂x=0,t≧0 と初期条件 u(x,0)=(sin(π(x-1)))^2 1≦x≦2 =0 0≦x<1または2<x ∂u(x,0)/∂t=0,x≧0 をみたす解u(x,t)のu(x,3)(x≧0)のグラフを描け。 お願いします!(>人<)

  • 置換する際の存在条件(高校レベル)

    x^2 + y^2 = 1 x > 0 y > 0 のときの z = x^3 + y^3 の最小値を求める問題なんですが まず x + y = t と置いて x^2 + y^2 = t^2 - 2xy = 1 ∴ xy = (t^2 - 1) / 2 ここで z = x^3 + y^3 = (x + y)(x^2 -xy + y^2) = t * (t^2 - 3xy) = t * (t^2 - 3(t^2-1) /2) として微分してグラフを書いて値域を求めるんですが、 tの範囲が円のグラフから 1 < t < √2 となるのはわかるんですが、 変形の過程でいつその条件が現れてくるのか分かりません。 x + y = t とするときに t > 0 となるのと xy = (t^2 - 1) / 2 > 0 より t > 1 とするのはわかるんですが、いつ√2の条件が出てくるのでしょうか。 また、この条件は円のグラフをイメージしないとでてこないのでしょうか。 つまり a^2 = u と置くときに ∃a ⇒ u > 0 みたいな感じで、2乗の条件から出したり、 a > 0 , b > 0, a + b = 1 , a + 5 = z みたいなのがあって a = 1 - b として a を削除するときに ∃a , a > 0 ⇒ 1 - b > 0 より b < 1 みたいな感じで不等式から条件を出したりするようにはできないのでしょうか。 わかりにくくてすいません。よろしくお願いします。ちなみに強引に変形してyを消去してxで微分という方法はわかります。この方法での疑問点について答えてください。

  • 極値を持つ条件

    nは正の整数、a,b,c,dは実数でa^2+b^2+c^2>0を満たす ものとする。実数x,y,zがx^n+y^n+z^n=1を満たす時 関数f=ax+by+cz+dについて次の問に答えよ (1)fが最大値、最小値を持つのはnがどのような整数を持つ場合か? 解答でn=2,4,6・・・とだけ書いてあったのですが何故 このような整数の時に、fが最小値、最大値を持つのかよくわかりません。 よろしくお願いします。