• ベストアンサー

シグマを使った式の証明

taropooの回答

  • taropoo
  • ベストアンサー率33% (34/103)
回答No.6

> taropooさんの2)の解答ですが、約分が間違っています。 > たぶん、tは1からでいいのではないかと思います。>taropooさん おっしゃる通りです。失礼しました。

msystem
質問者

お礼

皆さん、本当にありがとうございました。 何とか後輩に説明することができました。 ただやはり、分数の計算がでてくるため、本当の理解までは、なかなか難しいようです。(いまどき、東大の理系の学生でも、通分・約分ができない学生もいるようですね。将来の日本はどうなるのでしょう・・・) 高校のときにした、数列の公式なども、おぼろげながら思い出し、大変役に立ちました。 本当にありがとうございました。

関連するQ&A

  • 「e」が絡んだ不等式証明

    「自然数nについて、次の不等式が成り立つことを求めよ。    n・log(n)-n+1 ≦ log(n!) ≦ (n+1)log(n+1)-n  」 という問題で、最初は素直に左辺-右辺≧0を使って示しました。 その後、別解として数学的帰納法を用いた証明に挑みました。 n=1のときは楽勝ですが、n=kで成り立つことを仮定した後の「n=k+1」のときに、式変形でつまずきました。今回の質問は、その最後の大小関係の評価についてです。(以下、式はn=k+1のときのもの) log{(k+1)!}-(k+1)log(k+1)+(k+1)-1 =log(k+1)+log(k!)-(k+1)log(k+1)+k ≧k・logk-k+1-k・log(k+1)+k =1-log(1+1/k)^k ・・・・・・・・・・・・(1) (1)をみた時、「あ、これってeの定義式に似てるな」と思い、もしかして (1)≧1-log(e)=0 ・・・・・・・・・・・・・(2) でも言えるのかと思ったのですが、 疑問I: だからといって果たして(2)で等号が言えるのか? 疑問II:そもそも、lim[x→∞](1+1/x)^x=e は、eより大きい数からeに近付くのか?eより小さい数からeに近付くのか?そしてlim[x→-∞](1+1/x)^x=e では? 上の疑問について、答が出せる方、宜しくお願いします。

  • デルタ関数の証明

    [δ^(n)(t)]のフーリエ変換が(iω)^nになることを示せ。 という問題で ∫(-∞,∞)δ^(n)*e^(-iωt)dt =[δ^(n-1)e^(-iωt)](-∞,∞)+iω∫(-∞,∞)δ^(n-1)*e^(-iωt)dt =iω∫(-∞,∞)δ^(n-1)*e^(-iωt)dt=・・・・・ =(iω)^(n)と計算できると思うのですが [δ^(n-1)e^(-iωt)](-∞,∞)の部分が0になるなんてどうしたら言えるのでしょうか? それとも証明の仕方が間違っているんでしょうか? そもそもデルタ関数の微分とはどういうものなのでしょうか? 問題にははじめに δ(t)=lim(N→∞)g_N(t) δ'(t)=lim(N→∞)g'_N(t) g_N(t)=(N/π)^(1/2)e^(-NT^2) N=1,2,・・・・・ と与えられていますがどうもよくわかりません。 わかる方お願いします。

  • 漸化式の問題です^^;

    問題;各項が正の数である数列{a[n]}は,a[1]=t,a[n+1]=(1/2)*(a[n])^2+1/4で定義されている。またxの2次方程式 x=(1/2)*(x^2)+1/4の2解をp,qとする。p<t<qであるとき,以下の問いに答えよ。 (1)p,qの値を求めよ。 (2)任意の自然数nについて,不等式p≦a[n}≦tが成り立つことを示せ。 (3)lim[n→∞](a[n])を求めよ。 【自分の解答】 (1)は普通に2次方程式解いて、できました。 (2)も数学的帰納法を用いて一応できました。 (3)が全然わかりません…。 はさみうちの原理を用いるのだろうという予想はつくのですが、使い方がいまいちわからなくて^^; どなたか教えてください^^w よろしくお願いします。(・∀・)

  • lim[n→∞](1+1/n)^n が収束することの証明について

    lim[n→∞](1+1/n)^n が収束することの証明の中で、 1+1+(1/2!)+(1/3!)+…+(1/n!) ≦1+1+(1/2)+(1/(2^2))+…+(1/2^(n-1)) =1+{1-1/(2^n)}/(1-1/2) ≦3 というような不等式があるのですが、なぜこれが成り立つのかわかりません。教えてください。

  • 不等式の証明! 高二

    不等式n/2<1+1/2+1/3+……+1/2^n -1≦n^2 を証明せよ。 数学的帰納法でやるのかなーとは思います。 n=1の時は成り立つのは分かりました。 n=kが成り立つと仮定したときn=k+1のときに成り立つことの証明が出来ません^^; どなたか分かる方教えて下さい!

  • 数列の証明について

    数列の証明について質問です。 lim(n→∞){2(a_n+1)-a_n}=A・・・(1) ならば、lim(n→∞)a_n=Aが成り立つことを示せという問題です。 私はlim(n→∞)a_n=Bとおいて lim(n→∞)a_n+1=lim(n→∞)a_n という事を使い、 (1)の左辺がBとなることより B=Aを示しました。 しかし、私の回答では、lim(n→∞)a_nが収束する事を証明してないので、lim(n→∞)a_n=Bと置くのはダメみたいです。 (1)が成り立つとき、lim(n→∞)a_nが収束することの証明をお願いします。

  • 数学的帰納法 不等式の証明

    数学的帰納法の不等式の証明について質問させていただきます。 nは3以上の自然数とする。不等式 2のn乗>2n+1 ・・・(1)を数学的帰納法により証明せよ  この問題で、n=3のときを証明し、次にk≧3としてn=kのとき(1)が成り立ち、 2のk乗>2k+1 ・・・(2)と仮定する。  つぎに、n=k+1のとき(1)の両辺の差を考えると、 (2)より 2のk+1乗-{2(k+1)+1}=2・2のk乗-(2k+3)>2(2k+1)-(2k+3)となります。この>の右側の2(2k+1)-(2k+3)の部分がなぜこうなるのか分かりません。  できるだけ詳しく解説をお願いしたいです。よろしくお願いします。

  • 可解群の補題の証明

    NをGの正規部分群とするときGが可解であるためには、NおよびG/Nが ともに可解であることが必要十分である。 ということの証明で分からない部分があります。 どなたかご教授願います。 証明 必要性: G=G_0⊃G_1⊃・・・⊃G_r={1}、G_i/G_(i-1):アーベル という部分群列をとる。 φ:G→G/N を自然な全射とφ(G_i)=H_i とおけば (G/N)=H_0⊃H_1⊃・・・⊃H_r={1} となる。 また、各iについてφは自然に φ_iなる全射準同型を引き起こす。 したがってH_(i-1)/H_i:アーベル群となる。 Nの可解性はG:可解群⇒Gの任意の部分群は可解ということで証明が 略されています。 「この証明のまた、各iについて~アベール群となる。までの部分が 良く分かりません。」 もう一つ十分性の証明でも分からないところがあります。 十分性: N、G/Nは可解 N=N_0⊃N_1⊃・・・⊃N_s={1} N_(i-1)/N_i:アーベル (G/N)=H_0⊃H_1⊃・・・⊃H_t={1} H_(i-1)/H_i:アーベル なるものがとれる。 こととき、自然な全射φ:G→G/NによるH_iの逆像をG_iとおけば G=G_0⊃G_1⊃・・・⊃G_t=N さらに、φは自然に同型、G_(i-1)/G_i=H_(i-1)/H_iを引き起こすから 上記Nの部分群列と併せて、Gの可解性が導かれる。 「この証明は最後から2行目のさらに~の自然に同型を引き起こす というところがわかりません。」 「」の2箇所をどなたか解説していただけたら幸いです。 よろしくお願いします。

  • 2つの漸化式風の関数が同じあることの証明

    ある順列を2通りの方法で求めていて思いついた質問です。 n≧kなる自然数n,kに対して2つの関数f(n,k)とg(n,k)を定義します。 なお、下の定義式のCとPは高校数学で習う順列のことです。つまり、a≧b≧0なる整数a,bに対してC(a,b)=a!/(b!・(a-b!)) で P(a,b)=a!/(a-b)!です。 k=1のとき f(n,k)=1 k≧2のとき f(n,k)=Σ(i=0to(n-k)){C(n-1,i)・A(n-1-i,k-1)} k=1のとき g(n,k)=1 k≧2のとき g(n,k)=((k^n)-Σ(i=1tok-1){P(k,i)・A(n,i)})/k! このとき、f=gを証明するにはどうすればいいでしょうか。 例えば、k=2のときはf(n,2)=Σ(i=0to(n-2)){C(n-1,i)・1}          =Σ(i=0to(n-1)){C(n-1,i)}-C(n-1,n-1) =2^(n-1)-1 g(n,2)={2^n-P(2,1)・1}/2!          =2^(n-1)-1     で等しくなりますが、k≧3の場合にどうやればいいのか、わかりません。 kに関する帰納法でない解法でも結構です。

  • 微分積分の証明問題です。(再掲)

    こちらで質問させていただいた微分積分の証明問題ですが、 みなさんのアドバイスを参考に、自分なりに再度、解いてみました。 これで正しい証明になっているか、ご指導おねがいします。 【問題】 各自然数に対して、an=(n!/n^n)とおく。このとき、次の問に答えよ。 (1) 0 < an <= (1/n) (n=1,2,3,…)を示せ。 (2) 数列{an}の極限値を求めよ。 【(1)の回答】 n=1のとき、an=1, n=2のとき、an=(1/2), n=3のとき、an=(2/3)が成り立つ。 次に、n=kのときに成り立つと仮定する。即ち、 ak = k!/k^k <= (1/k)とする。 n=k+1のとき a(a+1) = ((k+1)!/(k+1)^(k+1)) = (k!/ (k+1)^k) < (k!/k^k) < (1/k) よって、k+1のときにも成り立つ。 以上から、数学的帰納法により、任意の自然数nについて 命題が成立することが示せる。 【(2)の回答】 はさみうちの原理により、 0 < lim{n→∞} an < lim{n→∞} (1/n) →0 ∴lim{n→∞} an = 0 以上、よろしくお願いします。