• ベストアンサー

n次元の積分計算

n次元の積分の計算です。 どなたか解説をお願い致します。 x,y∈R^N,t>0とします 積分区間を-∞~t^(-1/2)xとしたとき ∫exp(ーy^2)dy はどのように計算できるのでしょうか? 手ほどきよろしくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.3

dy もベクトルなんですが、 「積分区間」の意味は?

qwetyu11
質問者

補足

私は何か根本的に勘違いしているのでしょうか…。 テキストにはそのまま ∫ の下端が-∞、上端が|x|t^(ー1/2)と記載されていました…。 申し訳ありません…

その他の回答 (3)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.4

補足にある上端が、よく判らない式ですね。 質問文にあるのとも、また違う様だし。 n 次ベクトル y の dy で積分するなら、 積分範囲は n 次元の領域になるはずですが? それとも、線積分なんでしょうか。 それなら、積分経路を指定しないと。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

同じこと二度書いてもね… ベクトルの2乗って、何です?

qwetyu11
質問者

補足

すみませんでした。 exp(-|y|^2) です。 何度も申し訳ありません。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

exp の括弧の中身が、何だか判らないでしょう? その問題では。

qwetyu11
質問者

補足

申し訳ありません、exp(-y^2)です!

関連するQ&A

  • 2重積分の「置換積分」?

     I = ∬exp(x+y)dxdy ; 積分領域{(x,y)|0≦x≦1,0≦y≦1} という2重積分を、  t(x,y) = x+y と置き替え  ∂t/∂y = 1  0≦y≦1 ⇒ x≦t≦x+1 と思い  J(x) = ∫exp(t)dt ; 積分区間{t|x≦t≦x+1}  = {exp(1)-1}exp(x)  I = ∫J(x)dx ; 積分区間{x|0≦x≦1}  = {exp(1)-1}^2 のように定積分の置換積分の手法を用いて解いたら一応答えと合っていました。しかし、私としては、  ∂t/∂y = 1 ⇒ dt = dy のように考えている辺りがなんとなく間違っているような気がするのです。この問題だから偶然に答えが合っていたのでしょうか?もしくは、流れは正しくても、断りをもっと立てないといけないのでしょうか? パソコンでの数式の書き方に慣れていませんので、どうも見えにくくて申し訳ありませんが、ご教授のほどよろしくお願いしますm(_ _)m

  • 微分と積分の順序交換

    熱方程式 Ut-Uxx=0 (t>0,x∈R) の基本解を (4πt)^(-1/2)・exp(-x^2/4t)=K(t,x)とおきます。 φ(x)をR上有界な一様連続な関数と仮定し、 U(t,x)=∫(R~R)K(t,x-y)φ(y)dy (y∈R)とおきます。 このとき (∂/∂x)U(t,x)=∫(R~R)(∂/∂x)K(t,x-y)φ(y)dy を満たすことを示し、U(t,x)が熱方程式を満たすことを示そうとしています。 そこで、 以下の微分と積分を入れ替える定理を使って証明しようとしています。 定理1 h=h(x,y)は(a,b)×Rで定義された関数で、次の性質を持つ (1)ほとんどすべてのyについてhはxの関数とみて(a,b)でC1級である (2)∂h/∂xは(a,b)×Rで可積分とする (3)少なくとも1点c∈(a,b)でh(c,y)はR上可積分とする (4)∫(R~R)(∂h/∂x)dyは区間(a,b)の各点xで連続とする このとき∫(R~R)(∂h/∂x)dy=∂/∂x∫(R~R)h(x,y)dyとなる。 この定理を使って、Uが熱方程式を満たすことに苦戦しています。 どなたか行間の空かない詳しい証明をよろしくお願いします。

  • 積分

    次の積分の問題にどう手を付けたら,いいのかすらわかりません…。 どなたか解説お願いします。 t=√(y^2-x^2)と置き ∫(y/(1+y^2))(dy/(y^2-x^2)^(1/2)) 積分範囲(x~∞) を解け という問題なのですが。

  • 重積分

    数学の参考書に載っていた重積分問題で G(x,y,t)=(1/t)exp(-(x^2+y^2)/4t) (t>0)としたとき (1) ∂G/∂x,∂G/∂tをそれぞれ求めよ。(G=G(x,y,t)) (2) 各tに対して,次の積分I(t)を計算せよ。   I(t)=∬G(x,y,t)dxdy D={(x,y,t)|-∞<x<∞,-∞<y<∞,t>0} という問題なのですが, (1)は∂G/∂x=(-x/2t)G,∂G/∂t={(x^2+y^2)/4t^2-1/t}G と解けたのですが, (2)が参考書の解答では極座標に変換して∫exp(-x^2)dxの考え方で ∫dθ∫r(1/t)exp(-r^2/4t)dr D'={(r,θ,t)|0<r<ε,0<θ<2π,t>0} =4π(1-exp(-ε^2/4t)) lim(ε→∞) 4π(1-exp(-ε^2/4t))=4π としているのですが,これだと完全にtを無視している形になっていると思うのですが,t>0という条件だけでこのようにtを無視しても良いんでしょうか?? それに(1)の問題の意味は?と考えてしまうのですが 考え過ぎなのでしょうか…。 別解や解説お願いします。

  • 積分の計算

    積分I=∫[-∞→∞]exp(-ax^2)dx の計算を極座標を用いて計算するらしいのですが、 I^2=∬exp{-a(x^2+y^2)}dxdy =exp(-ar^2)rdrdθ とするまでは分かったのですが、積分範囲がわかりません。 どのようにして考えるのでしょうか。よろしくお願いします。

  • 畳み込み積分の積分区間の特定について

    統計の参考書中に、畳み込み積分の解説がされており、確率変数X、Yが独立ならば f_XY(x,y)=f_X(x)・f_Y(y)と変形でき、 T=X+Yと新しい確率変数を定義した場合、Tの確率密度は f_T(t)=∫-∞→∞ f_X(x)f_Y(t-x) dx とあらわせる。 と書いてありました。 ここまではいいのですが次の例題で早くもわからなくなりました。 例題 ではX,Y独立でf_XY(x,y)に従うとき、 f_XY(x,y) = 1/9 (0≦x≦3,0≦y≦3) 0 (それ以外の(x,y)のとき) ここでT=X+Yによりあらたな確率変数Tを定義する。このときのTの確率密度f_T(t)を求めよ。 というところで、 独立より、∫0→3 f_X(x)dx = ∫0→3 f_Y(y)dy = 1を考慮に入れると、 f_X(x) = 1/3 となる。 ここまでは、全確率の関係と独立の関係から解釈はできたのですが、次の解説で 以上から積分区間は (i) 0≦t≦3のとき (ii) 3≦t≦6のとき と場合分けができる。 (i)のときは0≦x≦tとなり、 (ii)のときはt-3≦x≦3になる と書いてありましたがここの理解がまったくわかりません。 どうして積分区間が上記のことからi&iiの場合に分けられて、そしてそのときのxの区画までも表せるのでしょうか。 お恥ずかしいですがここの積分区間の理解ができていないので大変困っています。 ご指導お願い申し上げます。

  • 陰関数そのものを使った積分の計算法

    いろいろな曲線の表示において、微分や積分の計算法を整理してみました。 x^2+y^2=4上の点(x,y)=(1,√3)でのdy/dxの値の求め方。 陽関数。y=√(4-x^2)よりdy/dx=-x/√(4-x^2)。x=1のとき、dy/dx=-1/√3。 媒介変数。x=2cos(θ),y=2sin(θ)とすると、dy/dx=dy/dθ÷dx/dθ=-cos(θ)/sin(θ)。 θ=π/3のとき、dy/dx=-1/√3。 逆関数。x=√(4-y^2)よりdy/dx=1÷dx/dy=-√(4-y^2)/y。y=√3のとき、dy/dx=-1/√3。 極座標に変数変換。(x,y)→(r,θ) (ただし、x=rcos(θ),y=rsin(θ))とすると、(1,√3)→(2,π/3)。 x^2+y^2=4→r=2。dx=cos(θ)dr-rsin(θ)dθ、dy=sin(θ)dr+rcos(θ)dθ。dr/dθ=0。 よって、dy/dx=-cos(θ)/sin(θ)。θ=π/3のとき、dy/dx=-1/√3。 陰関数。2x+2y(dy/dx)=0より、dy/dx=-x/y=1/√3。 y≧0,x^2+y^2≦4の面積の求め方。 陽関数。境界はy=√(4-x^2)より∫[-2,2]ydx=∫[-2,2]√(4-x^2)dx=[(1/2)√(4-x^2)+2arcsin(x/2)] [-2,2] = 2π 媒介変数。境界をx=2cos(θ),y=2sin(θ)とすると、∫[-2,2]ydx=∫[π,0]2sin(θ){-2sin(θ)}dθ = 2π 逆関数。境界はx=√(4-y^2)より∫[-2,2]ydx=2∫[0,1]y(dx/dy)dy=2∫[2,0]y(-y/√(4-y^2))dy=2π 極座標に変数変換。(x,y)→(r,θ)(ただし、x=rcos(θ),y=rsin(θ))とすると、 [y≧0,x^2+y^2≦4]→[0≦r≦1,0≦θ≦π]、ヤコビアンはr。よって、 ∫[y≧0,x^2+y^2≦4]dxdy=∫[0≦r≦2,0≦θ≦π]rdrdθ=2π 以上のように計算法を比べてみると、陰関数そのものを使った積分の計算法を僕は知りません。 数学の理論はボタンをかけるように、パラレルな理論があると信じているのですが、 一方を知らないので気になります。 陰関数そのものを使った積分の計算法があれば教えていただけますようお願いいたします。

  • 広義積分の計算

    エルミート多項式が完全正規直交系であることを示す途中の式で、      ∫exp(-t^2/2)dt 積分区間は t∈[-∞,∞] の積分計算の方法が分かりません。どなたか教えていただけませんか?よろしくお願いします。

  • 積分計算がわかりません

    微分方程式の問題で (x+y)dy/dx=3x+3y+1 の一般解を求めたいのですが 自分がわかった部分は Y=x+y・・・(1)とおいて 両辺をxで微分して dY/dx=1+dy/dx・・・(2) となるので(1)(2)から dY/dx=(4Y+1)/Yになって Y/(4Y+1)dY=dx で両辺を積分すれば求まると思ったのですが 左辺の積分がうまく出来ません また、ここまでの式変形がすでに間違えているのでしょうか

  • 累次積分の計算問題

    数学の累次積分の計算問題なんですが、 I = ∫∫ y /(1+x^2+y^2)^2 dy dx 積分範囲はそれぞれ 0 ≦ x ≦ 1 0 ≦ y ≦ 1 です どのように計算したらいいかわかりません また積分順序を変えた場合のほうもお願いします