• 締切済み
  • すぐに回答を!

代数の問題おしえてください

テストでこのような問題が出そうでわからないのでおしえてください。 (1)Znの元a+nZを[a]と表すことにする。 [a][b]=[ab]によりZnに積が定義されていることを示せ。 (2)[a][b]=[1]とab+nx=1となるx∈Zが存在することは同値なことを示せ。これより[a]がZnの中で乗法に関して逆元を持つための条件は、aとnが互いに素であることを示せ (3)(2)の条件を満たす剰余類[a]をnと素な剰余類という。Zn*をZnのnと素な剰余類の全体とする。Zn*は乗法に関して群になることを示せ。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.3

(1) Z_n の定義が述べられていませんが, a + nZ が元ということは, Z/nZ と同一視してかまわないでしょう. 乗法に関して可換モノイドになりますが, この問題では, そこまで証明する必要はありません. ただ, a, b ∈ Z より ab ∈ Z ですが, それだけを述べて点数がもらえるわけではありません. [a] = [c] かつ [b] = [d] であるにもかかわらず, [ab] = [cd] とならない例が存在すれば, [a][b] = [ab] という定義は破綻します. well-defined になっていることを, きちんと証明してください. (2) [a][b] = [1] と ab - 1 ∈ nZ は同値です. よって, この問題は初等整数論の問題に過ぎず, 高校でも頑張れば証明できます. ユークリッドの互除法あたりを中心に, 初等整数論を復習してください. a と n が互いに素であるとき, b と n も互いに素であることは, 当然のことではありますが, きちんと意識してください. (3) (Z_n)* が乗法に関して閉じていることさえ証明すれば, 結合法則と単位元の存在は明らかだし, (2) より逆元の存在も明らかです.

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

他人の回答に勝手に追記: No.1 さんは、Zn が解らないから教えて欲しい と言ってる訳じゃないからね。 今回質問の問題の答えは、講義や成書で Zn を定義するときに、まんま解説する事項 だということ。ノートなり教科書なりで Zn の定義を確認すれば自動的に解ることで、 解らないのは、それをしていないから。 だから、質問文に Zn が何だかを述べずに、 記号で書きっぱなしにするような聞き方では いけないってこと。 Zn の定義を確認して、A No.1 の補足に書いてごらん。 誠意を見せれば、彼が教えてくれるよ。たぶん。 (私は、書かないけど。)

共感・感謝の気持ちを伝えよう!

  • 回答No.1

一つ、教えてくれるかな? これだけでは答えようもないので。 Zn って言うのは、何かな? 二項代数? 群? それともただの集合? あるいはどういった集合? そういうことも何も定義されてない状態で、 この問題だけ出されても、お教えしようがないよ。 元代数学の非常勤講師。 (=^. .^=) m(_ _)m (=^. .^=) 仮に、実数全体の集合としても、 a+nZ が元になるっていうのが今度は分からない。 ちゃんと定義を出してくれるかな。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 代数の問題です。

    大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 代数の問題です。

    加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 代数学の直積に関する質問です

    代数学の質問です <a>,を<b>1と異なる2つの巡回群とするとき、<a>×<b>が巡回群であるための必要十分条件は、o(a),o(b)がともに有限で、かつ互いに素であることを示せ 資料を参考にしながら、十分条件は示すことができ たと思うのですが、必要条件の証明の方法がわかりません ちなみに、十分条件の証明として、 <a>×<b>の元(a,b)の位数は、(a,b)^s=(a^s,b^s)が単位元(1,1)に等しいためには、a^s,b^sがともに単位元である必要があるため、sがm,nの公倍数であることと同値である。m,nは互いに素であるためsがmnの倍数であることと同値である という証明で良いでしょうか よろしくお願いします

  • 代数

    次の行列の集合は行列の乗法に関して群となることを示せ。 N:={A∈GL(n,C)| Aの各行各列に0でないCの元が唯一つ} (Cは複素数全体の集合とする) A,B∈Nに対してdet(A,B)=detAdetB≠0なのでA,B∈NつまりNは乗法で閉じている。 行列の積について結合法則は成り立つ。 En(n次の単位行列)についてdetEn=1≠0つまりEn∈Nまたfor ∀A∈N,En・A=A・En=A Enは単位元 A∈Nに対しdetA≠0であるので逆行列A^(-1)が存在しdet(A^(-1))=(detA)^(-1)≠0 よってA^(-1)∈N逆元が存在する。 ∴Nは群である。 これで示したことになるのでしょうか?

  • 位数12の群Gの問題なんですが・・・

    Gを位数12の群G=<a,b>,a^^6=e,a^^3=b^^2=(ab)^^2とする。Gの元はG={e,a,a^^2,a^^3,a^^4,a^^5,b,ab,a^^2b,a^^3b,a^^4b,a^^5b}でありまた部分群N、Z、Kを次のようにおく。N=<a>,Z<a^^3>,K<b>とした時の (1)剰余群G/N、G/Z、N/Zの乗積表を作れという問題なんですがいまいちわかりません。 (2)またN,Kの標準的準同型写像f:G→G/Z x:→xZによる像を求めよという問題なんですがよくわかりません。アドバイス頂ければありがたいです。よろしくお願い致します。(Gの乗積表は省略しました。)

  • 代数学について

    A={p_0 + p_1x +p_2x^2 +・・・・+p_nx^n | p_0,・・・p_nは実数, n=0,1,2・・・} とおく。a,b∈Pに対し、 a〜b を 「a-b が、x^2+1で割り切れる」とする。 [a] , [b]∈A/~ に対し、 それらの和を [a] + [b] = [a+b] 積を [a] [b] = [ab] によりwell-definedかどうか示せ。 参考書を見ながら色々やっているのですが、イマイチ上手く行きません。 解説をお願いしたいです。

  • 代数に関する問題です(大学レベル)

    まず記号の説明ですが、 SLn(K)はdet=1となるようなn×n行列全体 Zを整数全体 Z/NZをZをNZで割った剰余類とします 問題 Nを自然数とする SL2(Z)からSL2(Z/NZ)への写像を ____a__b____________a+NZ__b+NZ (_________)_→_(_________________) と定めたとき ____c__d____________c+NZ__d+NZ この写像が全射になることを示せ。 というものです。 ユークリッドの互除法を使うようですがなかなか解けません。 ヒントになるようなことでも結構ですから アドバイスをお願いします。

  • 代数学(pシロー群)について

    問:NをGの正規部分群、PをGの一つのpシロー群とすると、NP/NはG/Nのpシロー群であることを示せ。 G/N=(Na|a∈H)について、(Na)(Nb)=N(ab)と定義すれば、この積に対して群をつくる。 最高べきの位数の部分群を素であることを示すとか書いてありましたが、よくわかりませんでした。 ご回答をお願いします。

  • 巡回群の生成元について

    お世話になります。よろしくお願いします。 「加法群Z、整数n≧0の時 商群Z/nZは、1を含む剰余類によって生成される位数nの有限巡回群である。(代数系入門 松坂和夫著 p.78)」 とあるのですが、 商群Z/nZの1を含む剰余類は{1,1±n,1±2n,・・・}、 2を含む剰余類は{2,2±n,2±2n,・・・}であり、 1を含む剰余類{1,1±n,1±2n,・・・}を ある整数kでk倍しても2を含む剰余類{2,2±n,2±2n,・・・} にはならないと思うので、 全ての元が生成元aの整数k倍で表される(加法の場合)という巡回群の定義に合わず、 「商群Z/nZは、1を含む剰余類によって生成される」というのがおかしいとおもうのですが、どうでしょうか? どなたか私の考えの間違いをご指摘ください。 よろしくお願いします。

  • 代数学の問題なんですが・・・

    (G,。): 群  a, b はGの元  ba = a(b^2), a^2 = e, b^3 = e このとき、<a,b>の元を列挙せよ。 という問題の答えが、<a,b>={(a^i)(b^j) | i = 0, 1, j = 0, 1, 2} となっています。なんとなく理解できているつもりなんですが、 ba = a(b^2)を何処に使っているのかわかりません。 同様に、 (G,。): 群  a, b はGの元  a^2 = e, b^4 = e, ab = (b^-1)a このとき、<a,b>の元を列挙せよ。 という問題の答えは、<a,b>={(a^i)(b^j) | i = 0, 1, j = 0, 1, 2, 3} でいいのでしょうか。 アドバイスお願いします。