• ベストアンサー

三角比

△ABCで、a=√3 b=√2 A=120° B=45° C=15° でcの長さを求めたいのですが 余弦定理よりa2=b2+c2-2bc cosAより解はc>0より2分の-√2±√6から二分の√6-√2が解となります。 しかしこの余弦定理に当てはめる段階で b2=a2+c2-2ac cos45°に当てはめてしまうと解は2分の√6±√2となってしまいどちらもc>0なので解が二つになってしまい解が先ほどの解と異なってしまいます この方法ではなぜ解が導けないんでしょう

質問者が選んだベストアンサー

  • ベストアンサー
  • j-mayol
  • ベストアンサー率44% (240/540)
回答No.2

こう考えれば分かると思います。 a2=b2+c2-2bc cosA 別の形で書けば cosA=(b^2+c^2-a^2)/2bc cosA=-1/2 ,2bc>0 よりb^2+c^2<a^2 つまり3辺の中でaがもっとも長いという条件が計算の中にすでに含まれている。 a2=b2+c2-2bc cosA も同様に考えてみると、こちらはそのような条件が計算上表れない。 ところが作図すれば分かるとおりA=120°の対辺aとC=15°の対辺cではa>cとならなければおかしい。したがってa2=b2+c2-2bc cosA を利用した場合不適切な解答も含まれた結果が生じる。

すると、全ての回答が全文表示されます。

その他の回答 (1)

  • f272
  • ベストアンサー率46% (8351/17867)
回答No.1

a=√3 b=√2 c=√6+√2 なら三角形にならない。

fuzikun
質問者

お礼

納得できましたどうもありがとうございました

すると、全ての回答が全文表示されます。

関連するQ&A

  • 数1の三角比問題で困ってます。

    数1の三角比問題で困ってます。 答えはあるのですが、その解の出し方が分かりません。 1)は余弦定理の公式で出すのでしょうか? よろしくおねがいします。 <Aが鈍角で、AB=6、AC=4,sinA=√15/4である△ABCがあるとき 1)cosAの値 2)BCの長さ

  • 三角比の問題です。

    三角比の問題です。 問題:a=√2 b=√2+√6 c=√3+1のときの△ABCにおいて、角ABCを求めよ。 余弦定理のcosA=b2+c2-a2/2bcというのを使ったのですが、うまくいきません。 できればこの公式を使った計算過程を教えてください。 よろしくお願いします。

  • 三角比の問題 (2)

    (問題)△ABCにおいて、a cosA +b cosB =c cosCが成り立つとき、 △ABCは、直角三角形を証明せよ。 余弦定理を使ってやっているのですが、答えが出ません。 教えてくださいまし。

  • 鈍角の三角比

    ずっと考えていますが分かりません泣 問題☆△ABCにおいて、等式cosA=cos(B+C)が成り立つならば△ABCはどのような三角形か。 解答☆A,B,Cが三角形の内角であることから、 B+C=180°-A これより cosA=cos(B+C)=cos(180°-A)= -cosA よって、2cosA=0,cosA=0 したがって、A=90°であることがわかるから △ABCは、A=90°の直角三角形である。 ♪「よって」までは分かるのですが、2cosAでなぜ2をかけるかわかりません。

  • 三角比の問題です

    次の問題が、答えは分かるのですが綺麗な解答が得られません。 BC=3,CA=8,AB=10の三角形ABCにおいて、∠B:∠Cをもっとも簡単な整数比で求めよ。 ∠B=x, ∠C=ax とおいて余弦定理を駆使すれば、 cos(ax)=-9/16, cos(x)=3/4 が得られるので、あとはあてずっぽにaに2,3,4・・・と代入していくと、 a=3で成り立つので∠B:∠C=1:3 と一応分かるのですが、 とてもきれいな解答とは言えないので良いヒントをください!

  • 三角比なんですけど

    図においてxの長さを求める問題なんですけど、参考書では面積に注目して、 ・△ABDの面積+△ADCの面積=△ABCの面積 になってますけど、これを辺BCに注目して、余弦定理を使ってxを求める事ってできないんでしょうか? やってみたんですけど、 まず余弦定理でBCを求めて BC^2=(5)^2+(3)^2-2*5*3*-1/2 ←Cos120 BC^2=25+9+15 BC^2=49 BC=7 で、xを求めるためにまた余弦定理を利用して、 7=(5^2+x^2-2*5*x*1/2)+(3^2+x^2-2*3*x*1/2) 7=25+x^2-5x+9+x^2-3x 2x^2-8x+27=0 これで解の公式を使ってxを求めようとしても、ルートの中がマイナスになるので解が求まらないんですけど、これって計算がおかしいのでしょうか。それとも、そもそもこの考えでは求まらないのでしょうか。 参考書では面積を利用して求めた答えはx=15/8になってます

  • 三角比(長さと角度を求める)

    (問題) △ABCにおいて、A=45°、b=3+√3、c=√6の時、a、B、Cを求めよ。 答えは、aは2√3、Bは105°、Cは30°です。 三角比の余弦定理、2辺と間の角が分かるので、a2=b2+c2-2bc cosAを試してみましたが、解答に辿り着きません。bの3+√3が曲者?私の視点が違っているのでしょうか? どの公式を使用してどのように計算していけば、もとめられるのでしょうか。ちなみに数学は全部苦手です。そんな私に超解りやすく解説していただけませんでしょうか。宜しくお願い致します。

  • 三角比の余弦定理を使った問題について

    「三角形ABCにおいて、辺AB=8cm、辺BC=7cm、Bの角度が110°であるとする。この場合辺ACの長さを求めよ」という問題を解いています。 余弦定理を使って下のように計算したのですが、この計算過程と計算結果は合ってますでしょうか?答えの部分は小数点1位にまるめています。余弦定理を習ったばかりで自信がないです。 (AC)^2 = 8^2 + 7^2 - 2*8*7*cos(110) (AC)^2 = 64 + 49 - 112*cos(110) (AC)^2 = 113 - 112*(-0.3420...) (AC)^2 = 113 - (-38.30...) (AC)^2 = 151.3.... AC = 12.3 cm

  • 三角比の問題です

    ∠A=90°、AB>ACの直角三角形において 頂点Aから辺BCに下ろした垂線をADとし ∠ABCの大きさをθとする。 BC=13、AD=6であるとき、次のものを求めよ。 (1)BD,CDの長さ (2)cosθの値 教科書の練習問題で、答えがBD=9、CD=4と あるだけで、途中経過が全くわかりません(。>0<。) 5時間考えましたが分からないので教えて下さい。 ちなみに正弦定理や余弦定理を使わない解法を お願いします。(まだ勉強してないので)

  • 三角比の問題での解の式

    △ABCの残りの辺の長さと角の大きさを求めよ。 a=4 B=30°C=105° という問題です。とりあえずAとbは解けました。 (ちなみにA=45°b=2√2です) cの解ですが、余弦定理で b^2=a^2+c^2-2ac・cosB 8=16+c^2-4√3c 0=c^2-4√3c+8 ここから解の式で解くと c=2・1/4√3±√48-32 c=2√3±2 となりましたが、答えは2√3+2でした。 どうして2√3-2じゃないのでしょうか?基礎的かもしれませんが、頭が回らないので分かる方教えてください。

このQ&Aのポイント
  • ブラザープリンターMFC-J987DNが電話やFAXだけでなく、コピーや印刷もできず、留守番電話のみが点滅している状況についてのトラブルシューティングです。問題の発生原因と試した対策について記載されています。
  • MFC-J987DNモデルのブラザープリンターが無線LAN接続で使用されている環境で、電話、ファックス、コピー、印刷が一切機能せず、留守番電話のみ点滅する現象が起きています。問題解決のための手順やチェックポイントが求められています。
  • iOSデバイスと無線LANを使用している環境で、MFC-J987DNブラザープリンターが全ての機能が停止し、留守番電話の点滅だけが見られます。このような大規模な機能停止について考えられる原因や対応策について説明されています。
回答を見る

専門家に質問してみよう