• ベストアンサー
  • すぐに回答を!

角の二等分線の問題

△ABCの3辺の長さが与えられ、∠Aの二等分線とBCとの交点をDとするとき、 ADに平行で点C(外角の二等分線のとき)を通るような補助線(?)を引き、 平行であること、そして二等辺三角形を見つけてBD:DCの辺の比が求められますよね。 ですが、このとき、なぜこのような補助線を引くという発想ができるのかが不思議です。 確かに補助線を引くことで平行であることを利用して、いいように話は進んでいくのですが、 こんな発想は1人では思いつきません… むしろ教えてもらって初めて気づけます。 でも教えてもらわなくても、こういった補助線を引くときのコツみたいなものを教えてくれると嬉しいです。 回答宜しくお願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数268
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • jaham
  • ベストアンサー率21% (215/1015)

与えられた部分しか見ていなければ難しいですね 昔の人は 木を見て森を見ず と言いました 木の細かいところばかりに目が行ってしまうと、質問のような状態になり易いです 森を見る 全体を総体をいろいろな角度から眺めれば、ヒントが見つかるものです 見れども見えず状態から逃れられない者も居ます 多くの事例を経験研究すれば たいていはその事例のどれかが当てはまる/よく似ているものです それと目眩ましに惑わされないようにすることです

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 二等分線

    三角形 ABC において,BC=4,AC=6,∠B=60°とします. ここで,∠Aの二等分線とBCの交点をD,∠Cの二等分線とABの交点をE, ADとCEの交点をFとしたとき, (1)∠AFCを求めよ. (2)AE+CDを求めよ. という問題があったのですが, (1)は120°とわかりました. (2)のほうは余弦定理等を使うと6と求まったのですが, 中学の範囲で解くにはどのようにしたらよいのでしょうか. AB:AC=BD:DC などを使うとは思うのですが… ヒントをお願いします.

  • 定理「三角形の外角の二等分線と比」

    定理「AB≠ACである△ABCの∠Aの外角の二等分線と辺BCの延長線との交点は、辺BCをAB:ACに外分する」 の定理をAB>ACの場合で良いから証明しろ という基礎問題です。 一応先例に倣って、ADに平行且つ頂点Cを通る線ECを引き、「三角形の平行線と線分の比」を利用出来るようにし、 ∠AEC=∠ACEより、AE=AC、なので△AECは二等辺三角形 BC:CD=BE:EA BC:BD=BE:BA BC:BD=EC:AD が言えます。ですが、その先の証明に辿り着けません~ン。アドバイスだけでも良いので、ご協力お願いします!

  • 数学の問題

    すみませんが、解答と解説をお願いします。 問題 図のように、二等辺三角形ABCの∠Aの二等分線とBCとの交点を Dとする。また、AC上に点Eをとり、BEとADとの交点をFとする。 AE:EC=7:2のとき、x:yを求めよ。

  • 角の二等分線

    △ABCにおいて,BC=18,AC=15,AB=12とする 角Aの二等分線がBCと 交わる点をDとするとき 長さADを求めよ BDやDCを求めて cosAを求めたりして やってみたんですが 答えがでなくて... もしよかったらお願いします!

  • 角の二等分線と比の定理の証明問題

    数Aの角の二等分線と比の定理2の証明ができなくて困っています。 定理2である、「AB≠ACである△ABCの頂点Aにおける外角の二等分線と辺BCの延長との交点Qは、辺BCをAB:BCに外分する。」をAB>ACの場合について証明せよ。 という問題です。 △ABCと△BQAで「二つの角がそれぞれ等しい」という相似条件を使って証明すると思うのですが、どうしても等しい角が見つかりません。 補助線なども利用するのでしょうか? ご教授よろしくお願いします。

  • 二等辺三角形

    四角形ABCDは円に内接しEは直線AB、CDの交点、Fは直線AD、BCの交点である ∠E、∠Fの二等分線を引いて、∠Eの二等分線とADの交点をI、BCとの交点をJ、∠Fの二等分線とDCの交点をH、ABの交点をGとする このとき△FIJは二等辺三角形になるらしいのですが何故なるのでしょうか? 質問がわかりにくいことがあるかも知れませんが伝わるよう努力しますのでよろしくお願いします

  • 外角の二等分線について

    △ABCにおいて∠Aの二等分線とBCの交点をD、∠Aの外角の二等分線とBCの延長との交点をEとする AB=14、BC=12、CA=10のとき、BEはいくらか とします 回答では、BE:EC=AB:AC=7:5とBC=12より、BD=7、BE=42としてるのですが、BEとECの長さが分からないのになぜ導けるのでしょうか?

  • 角の二等分線の性質について質問

    数学の参考書でわからないところがあるので教えてください。 「三角形ABCにおいて∠Aの二等分線と辺BCの交点をDとおく。 ADは∠Aの二等分線であるから、AB:AC=BD:CD」 このあと、特に何の断りも無く 「よって、AB:BD=AC:CD」 とあるのですが、これがなぜ成立するのか意味がわかりません。よろしくお願いします。

  • 二等辺三角形の角度を求める問題

    「AB=ACである二等辺三角形ABCにおいて、∠ABCの二等分線を引き、辺ACとの交点をDとするとAD=BDとなった。∠BACの大きさを求めよ。」 現在この問題をやっていて、答えは「36°」とあるのですが、この答えの求め方が分からず悩んでいます。 しかも、この問題は元々図が載っていないので、解き方以前に具体的にどういう図なのかということがつかめていません。点Aから辺BCの真ん中につながる線を一本引くということでしょうか? でも「辺ACとの交点をDとする」とあるので、もう一本、点Bから辺ACの真ん中につながる線をひくということなのでしょうか?なんだかよく分からなくなってきてしまいました。 こちらの問題の意味が分かり、解き方も分かるという方がいらっしゃいましたら、よろしくお願い致します。

  • 数1の三角形の頂点の二等分線の問題です。

    数1の三角形の頂点の二等分線の問題です。 どうしても解けません。 1、△ABCで、AB=√3、AC=2、∠A=60°とし、∠Aの2等分線とBCとの交点をDとする。ADの長さを求めよ。 2、△ABCにおいて、a=13、b=7、c=8とし、∠Aの二等分線とBCの交点をDとするとき、ADの長さを求めよ。 という問題の2つ、わかる方教えてください。 2に関しては一応答えはでたのですが、「15分の√2119+25」というめちゃくちゃな数字になってしまいました。。。