• ベストアンサー
  • すぐに回答を!

線形代数の対角化の問題です。お願いします。

こんにちは。 独学で線形代数を勉強してしているものです。 早速ですが、力を貸していただけませんでしょうか・・・ /////////////////////////////////////////// 下記の行列をAとして、A^(-2)を求めよ。    |  -3    0   2   | A= |  -1    -2  -1 |    |  -2   0   2   | /////////////////////////////////////////// という問題なのですが、解けません。。 まず、対角化が出来なくて困っています。 固有値は、λ=-2(重解)、1 の2つだと思うのですが、 固有値を-2としたとき、固有ベクトルxを求めるにあたって、 Tx=0 とするべきTが、    |  -1    0    2   | T= |  -1    0    -1 |    |  -2   0   4   | となり、1行目と2行目で矛盾が生じてしまいます。 固有値の求め方が違うのでしょうか?全く分かりません。 また、対角化が出来たとしても、-2乗というのはどういう計算になるのやら さっぱり分かりません。 回答・解説の無い問題で困っています。 どうぞ宜しくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

A^(-2) = (A^(-1))^2 が定義です. つまり, A の逆行列を求めて, それを2乗すればいい. A^2 の逆行列を求めてもいいですが, 少し計算量が増えるでしょう.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

あぁ逆行列の2乗なんですね。 分かりました! がんばってみます。

その他の回答 (2)

  • 回答No.2

対角化しても意味ないです。 逆行列は 3x3 程度なら公式丸暗記という手もありますが 1) 余因子行列/行列式 2) 掃きだし法。 3) LU分解の応用。 4) ケーリーハミルトンの応用 等、いろんなやり方があります。最初は 2) かな 3x3 なら 1) でも楽です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 まだまだ未熟で、1と2なら分かりますが 3と4はパッと浮かびません。 これから精進していきます!

  • 回答No.1

A^(-2) の定義を知らないのなら, A^(-2) を求めるために, どういう作業をするべきか, 見当もつかないはずです. それなのに, どうして A を対角化しようと思ったのですか.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

何故といわれると、何故でしょう・・・ 乗するときは対角化かと。。 参考書に例題もないので分かりません。 もし方針が分かるのなら教えてください。

関連するQ&A

  • 線形代数の問題の解き方を教えてください。

    線形代数の問題の解き方を教えてください。 2次形式f(x1,x2)=x1^2 + 2x2^2 をベクトルX=(x1,x2)T および行列Aを用いてXTAXと表すものとする。 (1)Aを求めよ (2)行列Aの固有値λ1,λ2 および固有ベクトルX1,X2を求めよ。ただしλ1>λ2とし、固有ベクトルは長さを1に正規化するものとする。 (3)f(X1,X2)を求めよ。 (4)f(X3)を求めよ。ただしX3=(1-α)X1+αX2,0≦α≦1とする。またf(X3)を最小とするαを求めよ。 という問題なのですが、簡単な線形代数しか学んでいないためわかりません。 どなたか教えていただけないでしょうか? よろしくお願いします。

  • 線形代数学の教科書

    大学工学部の線形代数学の、問題が豊富で、その解説の詳しい参考書を探しています。線形代数ではありません。具体的にいうと面積・体積と行列式、行列式の計算、余因子行列とクラーメルの公式、固有値と固有ベクトル、正方行列と対角化、内積と転置行列、直行行列と実対称行列の対角化、二次形式の標準化、一般固有空間、ジョルダン標準形が載っているものです。

  • 線形代数の問題です。

    線形代数の問題です。 1.U,U'がそれぞれK上のn次元ベクトル空間とする。このとき線形写像f:U→U'が単射であることと全射であることが同値であることを証明せよ。 2. 行列Aの固有値をλ1,λ2,…λnとしたとき、 行列A^2の固有値は、Aの固有値をそれぞれ2乗したもの以外には存在しない。これは正しいか 3.Aのすべての成分が正でかつ行列式が正なら、Aの逆行列の成分もすべて正であることを示せ。 以上です。よろしくお願いします。

  • 線形代数 行列 対角化

    対角化について質問させて頂きます。 対角化とは、 「正方行列を適当な線形変換により、もとの行列と同値な 対角行列に帰着させること。」 と説明がありました。 ここで、同値とは具体的にどのような内容を指すのでしょうか? また、対角化を求める際、 正方行列Aに対してP^-1APとなる正則行列Pを求めます。 この正則行列Pは正方行列Aより求めた固有値に属する固有ベクトル を並べたものになりますが、これはなぜですか? なぜ、固有ベクトルを並べたものが正則行列Pになるのでしょうか? 以上、ご回答よろしくお願い致します。

  • 線形代数について

    線形代数についていくつか質問があります。 (1)対称行列を対角化する際、固有ベクトルの大きさを1にする必要があるのですか?任意の大きさでは駄目なのですか? (2)対角化する際、U^-1AUと計算すると思うのですが、これの計算をしなくて、固有値を入れたものをいきなりだしてよいのですか? (3)根本的な質問で恥ずかしいのですが、行列式で出される値の意味がよく分かりません。行列との関係などを教えてください。 どれか一つでもいいので分かれば教えてください。

  • 線形代数の問題です

    線形代数の問題です。 いろいろ考えましたがわからないので教えて下さい。 ベクトルa1,a2,a3が次のように与えられている。ここで、記号tは転置記号であり、a1tは行ベクトルになる。 a1=(1 0 1),a2=(1 1 -1),a3=(-1 2 1)(縦に並べてある) A=a1a1t+(1/3)a2a2t-(1/6)a3a3t 1)行列Aの行列式の値と逆行列を求めよ 2)行列Aの固有値とそれに対応する固有ベクトルを求めよ 3)部分空間{x|x=t1a1+t2a2,t1,t2∈R}内の点xの関数(x-a3)tA(x-a3)の最小値とその最小点を求めよ。 自分の回答 1)行列A=(1/6) [7,4,5] [4,-2,-4] [5,-4,7] 行列式の値はー2 逆行列は掃き出し法で求め、 5/72 8/72 1/72 21/144 29/532 -8/72 -1/72 -22/216 5/72 2) 固有値は2,±1 λ=1の時固有ベクトルはk1(1 -1 -1) (縦ベクトル) λ=-1の時固有ベクトルはk2(1 -2 -1) (縦ベクトル) λ=2の時固有ベクトルはk3(1 0 1) (縦ベクトル) 3)はどうすればよいかわかりません。 3)だけでも良いので詳しい方解答・解説をおねがいします。 自分の求めた値は逆行列以外は切れの良い値になっているのでおそらくあっているのではと…

  • 線形代数の問題です。

    線形代数の問題です。 行列A= 2 -1 1 -1 t 1 1 1 2 t∈Cとするとき、 行列Aの特性方程式が重解を持つようなtを全て求めよ。 【自分の解答】 特性方程式: det(A-xI) = -(x-3)^2 + (x^3)(x-1)(t-x+1) … (*) までは変形しました。 (*)が重解をもつのは x=3(3重解)の他にどのようなものがありますか? パターンが果てしなくあるような気がして、 行き詰っています。。。

  • 線形代数学(2)

    もうひとつお願いします。 線形代数学の対角化の問題がわからないので解答をよろしくお願いしたいです。 1つ目 次の行列は対角化可能かどうか否かを判定せよ。また、対角化可能な行列については、その対角化を求めよ。 (1 -3) (2 -2) (1 2 0) (0 -1 3) (0 0 -1) 2つ目 定理10.1を用いて、次の行列Aの冪A^mを求めよ。 (1 4) (1 1) (2 -1 1) (1 1 2) (-3/2 1/2 -3/2) 定理10.1については画像を載せました。 行列式がかなり分かりづらいですが、 それぞれ2行2列と3行3列です。 よろしくお願いします。

  • 線形代数の問題です。またお願いします。

    こんにちは。 独学で線形代数を勉強してしているものです。 今朝も質問させていただいたのですが、 その続きでまたつまずいてしまいました。。 /////////////////////////////////////////// 下記の行列をAとして、 A^(7)  +  3A^(6) + A^(5) - A^(4)  +A^(3) -A^(2) +3A を求めよ。    |  -3    0   2   | A= |  -1    -2  -1 |    |  -2   0   2   | /////////////////////////////////////////// 今度こそ、対角化だと思うのですが 固有値λ=-2(重解)、1 となって ジョルダンの標準形に直して 変換行列    |   0    -2/3   1   | P= |   1    1/3  -3  |    |  0   -1/3   2   | となり           |   -2    1   0   | P^(-1)AP=  |    0   -2  0  |          |   0   0   1   | となりそうだというところまでは出来ましたが ここから進めなくなりました。 P^(-1)APを、対角行列Lと、1を1つ含む行列Nに分けて、 2項定理 [ P^(-1)AP ]^(n) = L^(n) + n*N*L^(n-1)   ※N^2はゼロ こんな感じで一般的な形にして、求めていくのかと思いましたが 行列が複雑になりすぎて、訳が分からなくなります。 変換行列やジョルダンの標準形を間違えているのか その後のn乗の計算がおかしいのか、 他のやり方があるのか、さっぱり分かりません。 どうぞ、力を貸していただけないでしょうか? 宜しくお願いします。

  • 線形代数 行列の対角化とユニタリー行列について

    線形代数 行列の対角化とユニタリー行列について 行列Aをの固有値a1,a2,.....に対して固有ベクトルをv1,v2,.....とするとAを対角化する変換行列Pは P=(v1,v2,...)となりますよね?このとき対角化された行列は PAP^(-1)とP^(-1)APのどちらですか? 教科書によって違うので混乱しています。 また、Aが対角化可能かどうかは具体的にはどのように判断するんですか? というのも今までエルミート行列しか対角化したことなかったんです。 エルミート行列を対角化する変換行列はユニタリー行列であるという認識は正しいですか? ユニタリー行列の場合変換の際に基底の大きは保存されると思います。よって大きさが変わっていいならユニタリーでなくても対角化できそうなのですが。 一般的には対角化とエルミート行列とユニタリー行列の間にはどんな関係があるのでしょうか? 迷走した質問ですみません。よろしくお願いします。