- ベストアンサー
- すぐに回答を!
三次関数の問題です。教えて下さい。
3次関数f(x)=xの三乗-(a+3)xの二乗+3ax-2b(a,bは定数)があり、 f′(2)=-3を満たしている。 関数f(x)の極大値をM、極小値をmとする。M-2m=7であるときのbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。 また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。の部分 の考え方と解き方が分かりません・・ 詳しい解説を書いていただけると嬉しいです。 よろしくお願いします。
- shinylight
- お礼率34% (50/145)
- 回答数1
- 閲覧数200
- ありがとう数1
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- info22_
- ベストアンサー率67% (2650/3922)
f(x)=x^3 -(a+3)x^2 +3ax-2b ...(1) f'(x)=3x^2 -2(a+3)x+3a ...(2) f'(2)=-3より f'(2)=12-4(a+3)+3a=-a=-3 ∴a=3 f(x)=x^3 -6x^2 +9x -2b f'(x)=3x^2-12x+9=3(x-1)(x-3) f'(x)=0とするxは x=1,3 x^3の係数1>0より x=1の時極大値f(1)をとり、x=3の時極小値f(3)をとるから M=f(1)=4-2b, m=f(3)=-2b M-2m=7より 4-2b+4b=7 2b=3 b=3/2 >「また、x≦bにおけるf(x)の最大値がbの二乗-15であるときbの値を求めよ。」の部分 の考え方と解き方が分かりません・・ bの範囲で最大値がf(1)となったりf(b)となって、変わるので、bの範囲で場合分けして考えるようにします。 x≦bの時の最大値=b^2-15であるから b≦1の時最大値f(b)=b^3-6b^2+7b=b^2-15 b^3-7b^2+7b+15=0 (b+1)(b-3)(b-5)=0 b≦1より b=-1 1≦b<4の時最大値f(1)=4-2b=b^2-15 b^2+2b-19=0 1≦b<4より b=2√5 -1 4≦bの時最大値f(b)=b^3-6b^2+7b=b^2-15 b^3-7b^2+7b+15=0 (b+1)(b-3)(b-5)=0 4≦bより b=5 以上まとめると条件を満たすbは以下の3通り存在します。 b=-1, 2√5 -1, 5
関連するQ&A
- 関数決定問題について疑問です
3次関数f(x)=ax^3+bx^2+cx+dがx=0で極小値0をとり、x=2で極大値4をとるようなa,b,c,d,の値を求めよ。の問題で解き方は分かるのですが、解説のところでf'(0)=0,f'(2)=0,f(0)=0,f(2)=4は必要条件であって逆を調べる必要があると書かれているのですが、3次関数の場合2つの条件f'(0)=0,f'(2)=0があるので必ず極値は存在する、よって逆を調べる必要がないような気がするのですがどうなんでしょうか?それと 次の条件を満たす3次関数f(x)を求めよ。f'(2)=3,f'(1)=-2,f(1)=1,f(2)=1,という問題では逆を調べる必要があると書かれていませんでした。なぜこっちの問題だと逆を調べる必要はないのですが?わからないので教えてください
- ベストアンサー
- 数学・算数
- 3次関数が極値をもつ必要十分条件
3次関数f(x)が極値をもつ⇔f'(x)=0が異なる2つの実数解をもつ なんですよね? これは、f'(x)=0が実数解α、β(α≠β)をもつとき、f(α)、f(β)は極値となる、ということにはならないんでしょうか? 例えば、 3次関数f(x)=ax^3+bx^2+cx+dがx=0で極大値2をとり、x=2で極小値-6をとるとき、定数a,b,c,dの値を求めよ。 という問題で、 x=0で極大値2をとり、x=2で極小値-6をとる⇒f'(0)=0、f'(2)=0 つまりf'(x)=0が異なる2つの実数解をもつのだから、しかもf(0)=2、f(2)=-6という条件も代入しているのだから、a,b,c,dを求めた後に確認をする必要があるというのが理解できません…
- 締切済み
- 数学・算数
- 三次関数
三次関数f(x)=x^3+ax^2+bx+cはx=1で極大値1をとり、x=3で極小値をとる。このときa,b,cの値と極小値を求めよ。 という問題です。答えa=-6,b=9,c=-3,f(3)=-3 答えだすのは問題ないんですけど、丁寧な模範解答にこう書かれていました。 「y=f(x)がx=1,3で極値をとるならばf’(1)=f’(3)=0が成立します。(f’(1)=f’(3)=0をそれぞれ計算し、a,bの値をだした後)、 a,bの値を出した直後はまだ必要条件だから、実際に x=1,3の前後でf’(x)の符号変化が起きているどうかを確認しておくべきです。十分性の確認というやつですね」 そこで質問ですが、問題文に「x=1で極大値1をとり、x=3で極小値をとる。」とあるんだから、普通に前後で符号の変化が起こることが分かるのに、なぜわざわざ確認しないといけないんですか? 極値と、そこで傾きが0になる、は同値ではないことは理解しています。 だれかご教授お願いします!
- ベストアンサー
- 数学・算数
- 3次関数の微分の問題
こんにちは。 数研出版「ベーシックスタイル三訂版」の163、164の問題です。 解説が無いので分からず困っています。 [163] 3次関数f(x)=x^3-ax^2が、0<x<1で極値をもたないための実数aに関する条件を求めよ。 [答え] a≦0、3/2≦a [164] 関数f(x)=1/3x^3-a^2x-1(a>0)の極大値と極小値との差が9/16となるaの値を求めよ。 [答え] a=5/3 以上です。 どちらか一方だけでもかまいませんので、分かるかたよろしくお願いします。
- ベストアンサー
- 数学・算数
- 至急 問題解説お願いします
こんばんは。 タイトル通りですが、以下の問題の解説をお願いします。途中式なども省かず示していただけるとありがたいです。 (1)3次関数 y=2x^3–3x^2+3ax(aは実数の定数)がx=α、x=βでそれぞれ極大値、極小値をとるとき、次の問に答えよ。 (ア)αの値の範囲を求めよ。 (イ)α+β、αβの値を求めよ。 (ウ)f(x)の極大値と極小値の値の和が0であるとき、aの値を求めよ。 (2)関数f(x)=2x^3+9x^2+6x–1はx=( )で極小値( )をとる。 ちなみに回答は、 (1) (ア)a<1/2 (イ)α+β=1、αβ=a/2 (ウ)a=1/3 (2)順に、[–3+√5]/2、[7–5√5]/2 です。よろしくお願いします!
- 締切済み
- 数学・算数
質問者からのお礼
とても分かりやすい回答ありがとうございます。 もう一度これをみてやり直してみたいと思います。 本当にありがとうございました!